www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenÜbertragungsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Übertragungsfunktion
Übertragungsfunktion < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Übertragungsfunktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 02:47 Di 10.01.2012
Autor: David90

Aufgabe
Ein Stromkreis, in welchem ein Bauteil mit ohmschen Widerstand R und ein Kondensator mit der Kapazität C in Reihe geschaltet sind, werde mit einer zeitlich veränderlichen Eingangsspannung e(t) betrieben. Es ist R, C > 0. Die Stromstärke i(t) löst dann für t [mm] \ge [/mm] 0 die Integralrechnung [mm] Ri(t)+\bruch{1}{C}\integral_{0}^{t}{i(t') dt'}=e(t) [/mm] zusammen mit der Vorgabe i(0)=0.
a) Wie lautet die zugehörige Übertragungsfunktion?
b) Berechnen Sie i im Fall, dass [mm] e(t)=-w\delta(t-t_{0}) [/mm] mit einer nicht-verschwindenden Konstanten w und einem späteren Zeitpunkt [mm] t_{0} [/mm] (d.h. [mm] t_{0} [/mm] >0) gilt.

Hinweise: Es gilt für eine Funktion f, die die Generalvoraussetzung erfüllt:
[mm] L[\integral_{0}^{t}{f(t') dt'}](s)=\bruch{1}{s}L[f(t)](s). [/mm]
Da eine Integralgleichung vorliegt, kann es durchaus sein, dass die Stromstärke einen [mm] \delta [/mm] - Stoß enthält.

Hi Leute,
ich komm bei der Aufgabe nicht klar:/ Mir fehlt dafür einfach das Verständnis.
Erstmal a)
Man führt eine Laplace-Trafo durch:
[mm] L[Ri(t)](s)+\bruch{1}{C}+L[\integral_{0}^{t}{i(t') dt'}](s)=L[e(t)](s) [/mm]
Mit L[Ri(t)](s)=RI(s), E(s)=L[e(t)](s), L[i(t)](s)=I(s) und dem Hinweis:
[mm] RI(s)+\bruch{1}{C}+\bruch{1}{s}I(s)=E(s) [/mm]
Ist das soweit richtig?
Wie macht man denn jetzt weiter?
Gruß David

        
Bezug
Übertragungsfunktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:58 Di 10.01.2012
Autor: Lentio

Hallo,

da würde mich die Antwort auch interessieren.^^

Hab für die Übertragungsfunktion:


[mm] L[Ri(t)](s)+\bruch{1}{C}L[\integral_{0}^{t}{i(t') dt'}](s)=L[e(t)](s) [/mm]



[mm] RI(s)+\bruch{1}{C*s}I(s)=E(s) [/mm]

[mm] I(s)=E(s)(R+\bruch{1}{C*s})^{-1} [/mm]
[mm] Uebertragungsfunktion=(R+\bruch{1}{C*s})^{-1}. [/mm]


Aber was mach ich jetzt zu b)?


mfg,
Lentio

Bezug
                
Bezug
Übertragungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:02 Mi 11.01.2012
Autor: Lentio

Hallo!


okay, ich habe jetzt mit L{e(t)}=L{-w* [mm] \delta(t-t_{0}) [/mm]  }
[mm] E(s)=-w*e^{-t_{0}*s} [/mm]

I(s)= [mm] (R+\bruch{1}{C*s})^{-1}*(-w*e^{-t_{0}*s}). [/mm]

Bekomme jetzt aber leider nicht mehr die Rücktransformation hin.

> mfg,
>  Lentio


Bezug
                        
Bezug
Übertragungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Mi 11.01.2012
Autor: fencheltee

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Hallo!
>  
>
> okay, ich habe jetzt mit L{e(t)}=L{-w* [mm]\delta(t-t_{0})[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

  }

>  [mm]E(s)=-w*e^{-t_{0}*s}[/mm]
>
> I(s)= [mm](R+\bruch{1}{C*s})^{-1}*(-w*e^{-t_{0}*s}).[/mm]
>  

hallo,
betrachte [mm] (R+1/(Cs))^{-1} [/mm] als F(s) und betrachte den [mm] e^s [/mm] term als verschiebung im zeitbereich

> Bekomme jetzt aber leider nicht mehr die
> Rücktransformation hin.
>  
> > mfg,
>  >  Lentio
>  

gruß tee

Bezug
                                
Bezug
Übertragungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Mi 11.01.2012
Autor: Lentio



Hallo und danke für die Antwort fencheltee.

Also

[mm] I(s)=(R+(cs)^{-1})^{-1}(-we^{-st_{0}}) [/mm]
[mm] =(\bruch{s}{Rs+c^{-1}})(-we^{-st_{0}}) [/mm]
[mm] =(\bruch{Rs}{(Rs+c^{-1})R})(-we^{-st_{0}}) [/mm]
[mm] =(\bruch{Rs+c^{-1}}{(Rs+c^{-1})R}-\bruch{c^{-1}}{(Rs+c^{-1})R})(-we^{-st_{0}}) [/mm]
[mm] =(\bruch{1}{R}-\bruch{c^{-1}}{R^2(s+(cR)^{-1}})(-we^{-st_{0}}) [/mm]
[mm] L^{-1}[I(s)]=L^{-1}[(\bruch{1}{R}-\bruch{c^{-1}}{R^2(s+(cR)^{-1}})(-we^{-st_{0}})] [/mm]
[mm] i(t)=-w*u_{t_{0}}(t)[R^{-1}\delta(t)-(cR)^{-1}e^{-(Rc)^{-1}}] [/mm] vielleicht?

mfg,
lentio

Bezug
                                        
Bezug
Übertragungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Mi 11.01.2012
Autor: fencheltee


>
>
> Hallo und danke für die Antwort fencheltee.
>  
> Also
>  
> [mm]I(s)=(R+(cs)^{-1})^{-1}(-we^{-st_{0}})[/mm]
>  [mm]=(\bruch{s}{Rs+c^{-1}})(-we^{-st_{0}})[/mm]
>  [mm]=(\bruch{Rs}{(Rs+c^{-1})R})(-we^{-st_{0}})[/mm]
>  
> [mm]=(\bruch{Rs+c^{-1}}{(Rs+c^{-1})R}-\bruch{c^{-1}}{(Rs+c^{-1})R})(-we^{-st_{0}})[/mm]
>  
> [mm]=(\bruch{1}{R}-\bruch{c^{-1}}{R^2(s+(cR)^{-1}})(-we^{-st_{0}})[/mm]
>  
> [mm]L^{-1}[I(s)]=L^{-1}[(\bruch{1}{R}-\bruch{c^{-1}}{R^2(s+(cR)^{-1}})(-we^{-st_{0}})][/mm]
>  
> [mm]i(t)=-w*u_{t_{0}}(t)[R^{-1}\delta(t)-(cR)^{-1}e^{-(Rc)^{-1}}][/mm]
> vielleicht?
>  
> mfg,
>  lentio

hallo,
das sieht fast ok aus:
[mm] u_t [/mm] gibt es ja nicht wirklich, da w für den wert steht.
zusätzlich fehlt bei der e-funktion ein "t" im exponenten,
sowie ein [mm] R^2 [/mm] im nenner vor der e-funktion.
und am ende fehlt die verschiebung durch den [mm] exp(-st_o) [/mm] term, der dann eine verschiebung aller "t's" um [mm] t-t_0 [/mm] zur folge hat. was ja auch logisch ist, wenn ein dirac-impuls erst zur zeit [mm] t_0 [/mm] kommt, kann auch die antwort darauf frühestens zum zeitpunkt [mm] t_0 [/mm] kommen

gruß tee

Bezug
                                                
Bezug
Übertragungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:24 Fr 13.01.2012
Autor: Lentio

Hallo und danke!

Okay, also so :




[mm] i(t)=-w[R^{-1}\delta(t-t_{0})-(c)^{-1}R^{-2}e^{-(Rc)^{-1}}] [/mm] ?

mfg,
lentio

Bezug
                                                        
Bezug
Übertragungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:16 Fr 13.01.2012
Autor: fencheltee


> Hallo und danke!
>  
> Okay, also so :
>  
>
>
>
> [mm]i(t)=-w[R^{-1}\delta(t-t_{0})-(c)^{-1}R^{-2}e^{-(Rc)^{-1}}][/mm]
> ?
>  
> mfg,
>  lentio

hallo, es fehlt immer noch das t im exponenten (bzw [mm] t-t_0 [/mm] wegen der verschiebung)

gruß tee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]