www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisnicht-konstante ganze Fktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - nicht-konstante ganze Fktionen
nicht-konstante ganze Fktionen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nicht-konstante ganze Fktionen: Tipp,Idee
Status: (Frage) beantwortet Status 
Datum: 14:04 Mo 16.05.2022
Autor: nkln

Aufgabe
Sei $f: [mm] \mathbb{C}\to\mathbb{C}$ [/mm] eine nicht-konstante ganze Funktion.Zeigen Sie die Äquivalenz der folgende Aussagen
$(i)$ $ f $ist ein Polynom.
$(ii)$ Es gibt Konstanten [mm] $R_0,C,s>0$ [/mm] derart, dass
                                                   [mm] $f(\mathb{C} \setminus K_{R}(0)) \subset \mathbb{C}\setminus K_{CR^s}(0)$ [/mm]
für alle [mm] $R>R_0$ [/mm] gilt.

$(iii)$ Zu jedem $R>0$ exitiert ein $R' >0$ derart,dass
[mm] $f(\mathb{C} \setminus K_{R'}(0)) \subset \mathbb{C}\setminus K_{R}(0)$ [/mm]


Hallo,

Die Beweisstrategie, die ich anwenden möchte, ist der Ringschluss. Das heißt, dass ich zeige werden, dass $(i) [mm] \Rightarrow [/mm] (ii) [mm] \Rightarrow [/mm] (iii) [mm] \Rightarrow [/mm] (i)$ gilt.

1. $(i) [mm] \Rightarrow [/mm] (ii)$
Wir haben als Voraussetzung, dass $f$ eine nicht-konstante ganze Funktion und $f$ ist ein Polynom.  Sei nun [mm] $f(z)=\sum_{j=0}^{n} a_j \cdot z^j \in \mathbb{C}[z]$ [/mm] ein nicht konstantes Polynom vom Grad n. Laut meinen Skript sind dann mit dem Fundamentalsatz der Algebra zwei Aussagen in diesem Setting äquivalent:

$(1)$$f(z)$ hat eine Nullstelle in [mm] $\mathbb{C}$ [/mm]
$(2)$Es gibt [mm] $b_1,...,b_n \in \mathbb{C}$ [/mm] mit der Eigenschaft $f(z)= [mm] a_n \produkt_{j=1}^{n}(z-b_i)$. [/mm]

Nun folgere ich mit Hilfe des Satzes, dass $f(z)$ eine Nullstelle $z [mm] \in \mathbb{C}$ [/mm] mit $f(z)=0$hat.
Ich wollte nun irgendwie [mm] $K_R(0)$ [/mm] ins Spiel bringen, weiß aber nicht wie..

Würde mir  vielleicht jemand helfen wollen, bitte? Ist mein Ansatz käse?

        
Bezug
nicht-konstante ganze Fktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:28 Di 17.05.2022
Autor: fred97


> Sei [mm]f: \mathbb{C}\to\mathbb{C}[/mm] eine nicht-konstante ganze
> Funktion.Zeigen Sie die Äquivalenz der folgende Aussagen
>  [mm](i)[/mm] [mm]f [/mm]ist ein Polynom.
>  [mm](ii)[/mm] Es gibt Konstanten [mm]R_0,C,s>0[/mm] derart, dass
>                                                    
> [mm]f(\mathb{C} \setminus K_{R}(0)) \subset \mathbb{C}\setminus K_{CR^s}(0)[/mm]
>  
> für alle [mm]R>R_0[/mm] gilt.
>  
> [mm](iii)[/mm] Zu jedem [mm]R>0[/mm] exitiert ein [mm]R' >0[/mm] derart,dass
>  [mm]f(\mathb{C} \setminus K_{R'}(0)) \subset \mathbb{C}\setminus K_{R}(0)[/mm]
>  
> Hallo,
>  
> Die Beweisstrategie, die ich anwenden möchte, ist der
> Ringschluss. Das heißt, dass ich zeige werden, dass [mm](i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i)[/mm]
> gilt.
>
> 1. [mm](i) \Rightarrow (ii)[/mm]
>  Wir haben als Voraussetzung, dass
> [mm]f[/mm] eine nicht-konstante ganze Funktion und [mm]f[/mm] ist ein
> Polynom.  Sei nun [mm]f(z)=\sum_{j=0}^{n} a_j \cdot z^j \in \mathbb{C}[z][/mm]
> ein nicht konstantes Polynom vom Grad n. Laut meinen Skript
> sind dann mit dem Fundamentalsatz der Algebra zwei Aussagen
> in diesem Setting äquivalent:
>  
> [mm](1)[/mm][mm]f(z)[/mm] hat eine Nullstelle in [mm]\mathbb{C}[/mm]
>  [mm](2)[/mm]Es gibt [mm]b_1,...,b_n \in \mathbb{C}[/mm] mit der Eigenschaft
> [mm]f(z)= a_n \produkt_{j=1}^{n}(z-b_i)[/mm].
>  
> Nun folgere ich mit Hilfe des Satzes, dass [mm]f(z)[/mm] eine
> Nullstelle [mm]z \in \mathbb{C}[/mm] mit [mm]f(z)=0[/mm]hat.
>  Ich wollte nun irgendwie [mm]K_R(0)[/mm] ins Spiel bringen, weiß
> aber nicht wie..
>  
> Würde mir  vielleicht jemand helfen wollen, bitte? Ist
> mein Ansatz käse?

Ja, leider. Ich gebe Dir mal einen Hinweis. $f$ sei ein nichtkonstantes Polynom .

Dann gilt $f(z)= [mm] a_nz^n+a_{n-1}z^{n-1}+...+a_1z+a_0$, [/mm] wobei $n [mm] \ge [/mm] 1$, [mm] a_j \in \IC [/mm] und [mm] a_n \ne [/mm] 0.

Somit [mm] $f(z)=z^n [/mm] ( [mm] a_n+ \frac{a_{n-1}}{z}+....+\frac{a_{0}}{z^n}).$ [/mm]

Die Funktion in der Klammer nennen wir $g$.

Dann gilt: $g(z) [mm] \to a_n$ [/mm] für $|z| [mm] \to \infty.$ [/mm] Also

   $|f(z)| [mm] \to \infty$ [/mm] für $|z| [mm] \to \infty.$ [/mm]

D. h. : Ist $R>0$, so gibt es ein $R' >0$ mit

   $|f(z)| [mm] \ge [/mm] R$  für $|z| [mm] \ge [/mm] R'$.

Damit gilt $(iii).$

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]