www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationkleine Frage zum integrieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - kleine Frage zum integrieren
kleine Frage zum integrieren < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kleine Frage zum integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Mo 13.04.2009
Autor: eva-marie230

Abend,

Eine kurze Frage:Wenn  eine Fkt.zb. für p=1 [mm] ,|f|^1 [/mm] integrierbar ist,ist sie dann auch automatisch zb für p=2 integrierbar?

LG

        
Bezug
kleine Frage zum integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Mo 13.04.2009
Autor: XPatrickX


> Abend,

Hallo!

>  
> Eine kurze Frage:Wenn  eine Fkt.zb. für p=1 [mm],|f|^1[/mm]
> integrierbar ist,ist sie dann auch automatisch zb für p=2
> integrierbar?

Nein, betrachte [mm] f(x)=\frac{1}{\wurzel{x}} [/mm] auf M=(0,1].

Dann ist [mm] $\int_M [/mm] |f| dx = [mm] 2\wurzel{x} \; |_{x=0}^{x=1} [/mm] = 2 < [mm] \infty$ [/mm]

Aber [mm] $\int_M |f|^2 [/mm] dx = [mm] \int_0^1 \frac{1}{x} [/mm] dx = [mm] ln(x)\; |_{x=0}^{x=1} [/mm] = [mm] \infty$ [/mm]


Gruß
Patrick

>  
> LG

Bezug
                
Bezug
kleine Frage zum integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:15 Mo 13.04.2009
Autor: eva-marie230

Hallo

Stimmt,eigentlich eine dumme Frage^^.Ich hab noch so eine;),dass : [mm] L^1([0,1]) \subset L^2([0,1]) [/mm] gilt doch nicht oder?Nur umgekehrt?

LG

Bezug
                        
Bezug
kleine Frage zum integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 04:04 Di 14.04.2009
Autor: Marcel

Hallo,

> Hallo
>
> Stimmt,eigentlich eine dumme Frage^^.Ich hab noch so
> eine;),dass : [mm]L^1([0,1]) \subset L^2([0,1])[/mm] gilt doch nicht
> oder?

nein, Patrick hat doch insbesondere eine [mm] $L^1([0,1])$-Funktion [/mm] angegeben, die nicht in [mm] $L^2([0,1])$ [/mm] liegt (setze einfach für [mm] $x_0=0$ [/mm] dann [mm] $f(x_0)=f(0):=0\,,$ [/mm] das ist eh für das Integral dann uninteressant, da [mm] $\{x_0\}$ [/mm] eine Lebesguesche Nullmenge ist).
(Würde [mm] $L^1([0,1]) \subset L^2([0,1])$ [/mm] gelten, so müßte die Funktion $f: [0,1] [mm] \to \IR$ [/mm] mit $x [mm] \mapsto f(x):=\frac{1}{\sqrt{x}}$ [/mm] ($x [mm] \in [/mm] (0,1]$) und [mm] $f(0):=0\,$ [/mm] auch $f [mm] \in L^2([0,1])$ [/mm] erfüllen, was sie aber nicht tut!)

> Nur umgekehrt?

Ja, das gilt sogar allgemeiner:
Ist [mm] $(\Omega,\sigma,\mu)$ [/mm] ein endlicher []Maßraum, so gilt [mm] $L^q (\Omega, \sigma, \mu; [/mm] E) [mm] \subset L^p (\Omega, \sigma, \mu; [/mm] E)$ für $1 [mm] \le [/mm] p [mm] \le [/mm] q [mm] \le \infty$ [/mm] (vgl. []Wiki, Lp-Raum); und das Lebesguemaß auf [mm] $\Omega=[0,1]$ [/mm] ist ein endliches Maß.

Der Beweis ist für $1 [mm] \le [/mm] p [mm] \le [/mm] q < [mm] \infty$ [/mm] auch nicht schwer:
Denn etwa nach der []Hölder-Ungleichung  gilt für $f [mm] \in L^q (\Omega, \sigma, \mu; [/mm] E)$, wenn $1 [mm] \le [/mm] p [mm] \le [/mm] q < [mm] \infty$ [/mm] ist:

Zunächst ist klar, dass [mm] $\exists [/mm] a [mm] \ge [/mm] 0$ mit [mm] $\frac{p}{q}+a=1\,,$ [/mm] d.h. [mm] $a=1-\frac{p}{q}=\frac{q-p}{q} \ge 0\,.$ [/mm] Ich beschränke mich auf den Fall, den Beweis für $a > 0$ zu führen:
Wir setzen [mm] $r:=\frac{1}{\frac{p}{q}}=\frac{q}{p}$ [/mm] und [mm] $s:=\frac{1}{a}=\frac{q}{q-p}\,.$ [/mm]

Dann gilt nach Hölder mit [mm] $I_\Omega=1$ [/mm] (d.h. [mm] $I_\Omega(x):=1$ [/mm] für alle $x [mm] \in \Omega$, [/mm] insbesondere also [mm] $|I_\Omega|=1=I_\Omega$): [/mm]
[mm] $$\|f\|_p^p=\int_\Omega |f(x)|^p\;d\mu(x)=\int_\Omega |f(x)|^p I_\Omega(x)\;d\mu(x)=\|\;|f|^p\,*\,I_\Omega\;\|_1 \le \|\,|f|^p\,\|_r\;*\;\|I_\Omega\|_s\,.$$ [/mm]

Weiter ist (ich schreibe nun kurz [mm] $\int |f|^p$ [/mm] anstatt [mm] $\int_\Omega |f(x)|^p\,d\mu(x)$ [/mm] etc.) wegen $f [mm] \in L^q (\Omega, \sigma, \mu; [/mm] E)$ hier
[mm] $$\|\,|f|^p\,\|_r=\Big(\int |f|^{pr}\Big)^{1/r}=\left(\Big(\int |f|^q\Big)^{1/q}\right)^p=\|f\|_q^{\;p} [/mm] < [mm] \infty\,,$$ [/mm]
und außerdem ergibt sich
[mm] $$\|I_\Omega\|_s=\Big(\int 1^s\Big)^{1/s} \le \big(\mu(\Omega)\big)^{1/s}=\big(\mu(\Omega)\big)^{\frac{q-p}{q}}\,.$$ [/mm]

Also
[mm] $$\|f\|_p^p \le \underbrace{\|f\|_q^{\;p}}_{\substack{< \infty\\\text{wegen }f \in L^q}}\;*\;\underbrace{\big(\mu(\Omega)\big)^{\frac{q-p}{q}}}_{\substack{< \infty\\\text{da }\mu(\Omega) < \infty}}< \infty\,,$$ [/mm]
und damit $f [mm] \in L^q(\Omega,\sigma,\mu; [/mm] E)$ erkannt.

Insbesondere läßt sich hieraus sofort die Beziehung
[mm] $$\frac{\|f\|_p}{\Big(\mu(\Omega)\Big)^{1/p}} \le \frac{\|f\|_q}{\Big(\mu(\Omega)\Big)^{1/q}}$$ [/mm]
ablesen (durch Anwendung der [mm] $\,p$-ten [/mm] Wurzel).

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]