www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihengeometrische Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - geometrische Reihe
geometrische Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geometrische Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 So 15.01.2012
Autor: volk

Hallo,
ich gehe gerade eine Aufgabe durch und komme bei einer Teilaufgabe nicht auf das richtige Ergebnis.

Ich habe folgendes bei den Umformungen benutzt:
[mm] 1-cos(x)=2sin(0.5*x)^2 [/mm]
[mm] e^{-ix}=cos(x)-isin(x) [/mm]

[mm] |\summe_{u=0}^{N-1}e^{-iu\vec{Q}\vec{a}}|^2=|\bruch{1-e^{-iN\vec{Q}\vec{a}}}{1-e^{-i\vec{Q}\vec{a}}}|^2=\bruch{1-cos(N\vec{Q}\vec{a})+isin(N\vec{Q}\vec{a})}{1-cos(\vec{Q}\vec{a})+isin(\vec{Q}\vec{a})}|^2=|\bruch{2sin(0.5*N\vec{Q}\vec{a})^2+isin(N\vec{Q}\vec{a})}{2sin(0.5*\vec{Q}\vec{a})^2+isin(\vec{Q}\vec{a})}|^2 [/mm]
[mm] =\bruch{4sin(0.5*N\vec{Q}\vec{a})^4+sin(N\vec{Q}\vec{a})^2}{4sin(0.5*\vec{Q}\vec{a})^4+sin(\vec{Q}\vec{a})^2} [/mm]

rauskommen soll [mm] \bruch{sin(0.5*N\vec{Q}\vec{a})^2}{sin(0.5*\vec{Q}\vec{a})^2} [/mm]

Kann mir bitte einer sagen, wo mein Fehler liegt?

Liebe Grüße,

volk

        
Bezug
geometrische Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 So 15.01.2012
Autor: leduart

Hallo
du hast keinen Fehler gemacht, du musst nur noch  deine [mm] sin^2(x) [/mm] in sin(x/2) verwandeln,  (über [mm] sin^1=1-cos^2) [/mm] oder  einfacher
hier direkt noch mit cos den betrag bilden und dann erst in sin(x/2) umwandeln.
[mm] |\bruch{1-e^{-iN\vec{Q}\vec{a}}}{1-e^{-i\vec{Q}\vec{a}}}|^2=\bruch{1-cos(N\vec{Q}\vec{a})+isin(N\vec{Q}\vec{a})}{1-cos(\vec{Q}\vec{a})+isin(\vec{Q}\vec{a})}|^2 [/mm]
Dein "Fehler" ist nicht allse als fkt von (x/2) zu schreiben
einfacher wär auch das nicht mit soviel unnötigen Konstanten zu schreiben sondern direkt über [mm] \summe_{k=1}^{n-1}e^{ikx} [/mm] zu summieren, aber das ist Geschmacksache.
Gruss leduart

Bezug
                
Bezug
geometrische Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:58 So 15.01.2012
Autor: volk

Hallo,
Ich habe es hinbekommen.
Ich benutze [mm] sin(\bruch{x}{2})=\wurzel{\bruch{1-cos(x)}{2}}. [/mm] Wenn ich [mm] sin(x)^2+cos(x)^2=1 [/mm] umstelle, das einsetze  erhalte ich [mm] sin(x)^2=4*sin^2(\bruch{x}{2})-4*sin^4(\bruch{x}{2}) [/mm] was zum richtigen Ergebnis führt.

Vielen Dank und einen schönen Abend

LG volk

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]