www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenf-invarianter Unterraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - f-invarianter Unterraum
f-invarianter Unterraum < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f-invarianter Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 Di 10.06.2008
Autor: SusanneK

Aufgabe
Geben Sie ein Beispiel für einen f-invarianten Unterraum U von [mm] \IR^3 [/mm] der Dimension 2, wobei [mm] f:\IR^3 \to \IR^3 [/mm] durch [mm] f(x) = \pmat{1&0&0\\0&0&-1\\0&1&0} x [/mm] für alle [mm] x \in \IR^3 [/mm] definiert ist.

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo,
ist das so richtig gedacht, oder verstehe ich die Aufgabe falsch ? :
[mm] U=<\vektor{1\\0\\0},\vektor{0\\1\\0}> [/mm]

Danke, Susanne.

        
Bezug
f-invarianter Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 Di 10.06.2008
Autor: angela.h.b.


> Geben Sie ein Beispiel für einen f-invarianten Unterraum U
> von [mm]\IR^3[/mm] der Dimension 2, wobei [mm]f:\IR^3 \to \IR^3[/mm] durch
> [mm]f(x) = \pmat{1&0&0\\0&0&-1\\0&1&0} x[/mm] für alle [mm]x \in \IR^3[/mm]
> definiert ist.
>  Ich habe diese Frage in keinem anderen Forum gestellt.
>  
> Hallo,
>  ist das so richtig gedacht, oder verstehe ich die Aufgabe
> falsch ? :
>  [mm]U=<\vektor{1\\0\\0},\vektor{0\\1\\0}>[/mm]

Hallo,

ob's falsch gedacht ist, weiß ich gar nicht, jedenfalls ist es falsch gemacht.

f-invariant bedeutet ja, daß das Bild von U eine Teilmenge v. U sein muß.

Gucken wir uns Dein U nun an:

[mm] f(U)= [/mm] = [mm] <\vektor{1\\0\\0}, \vektor{0\\0\\1}>, [/mm] und das ist keine Teilmenge von U.

Aber schau Dir mal die Matrix rechts unten an:

[mm] \pmat{1&0&0\\0&\red{0}&\red{-1}\\0&\red{1}&\red{0}} [/mm]

Gruß v. Angela







Bezug
                
Bezug
f-invarianter Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:57 Di 10.06.2008
Autor: SusanneK


> f-invariant bedeutet ja, daß das Bild von U eine Teilmenge
> v. U sein muß.

Ah, das hatte ich übersehen ! VIELEN DANK !
Also, dann wähle ich
[mm]f(U)=[/mm] = [mm]<\vektor{0\\-1\\0}, \vektor{0\\0\\1}>,[/mm] und das ist eine Teilmenge von U.

>  
> Aber schau Dir mal die Matrix rechts unten an:
>  
> [mm]\pmat{1&0&0\\0&\red{0}&\red{-1}\\0&\red{1}&\red{0}}[/mm]
>  

Erkennst Du das ohne Probieren an der Matrix ?

LG, Susanne.

Bezug
                        
Bezug
f-invarianter Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Di 10.06.2008
Autor: angela.h.b.


> > f-invariant bedeutet ja, daß das Bild von U eine Teilmenge
> > v. U sein muß.
>  
> Ah, das hatte ich übersehen ! VIELEN DANK !
>  Also, dann wähle ich
> [mm]f(U)=[/mm] =
> [mm]<\vektor{0\\-1\\0}, \vektor{0\\0\\1}>,[/mm] und das ist eine
> Teilmenge von U.

Hallo,

sicher meinst Du dies:

Du wählst

[mm] U:=<\vektor{0\\1\\0},\vektor{0\\0\\1}> [/mm] und erhältst

> [mm]f(U)=[/mm] =
> [mm][mm] <\vektor{0\\-1\\0}, \vektor{0\\0\\1}> [/mm]

=U.

Also hast Du mit U einen f-invarianten Unterraum gefunden.


>  >  
> > Aber schau Dir mal die Matrix rechts unten an:
>  >  
> > [mm]\pmat{1&0&0\\0&\red{0}&\red{-1}\\0&\red{1}&\red{0}}[/mm]
>  >  
> Erkennst Du das ohne Probieren an der Matrix ?

Naja, nicht immer, aber hier hat man ja eine Diagonalkästchenmatrix vorliegen.

[mm] \pmat{\blue{1}&0&0\\0&\red{0}&\red{-1}\\0&\red{1}&\red{0}}. [/mm]

Wenn Du verstehst, wie die Darstellungsmatrizen gemacht werden, wirst Du verstehen, daß Du an den Diagonalblöcken invariante Unterräume ablesen kannst.

Ich habe eben in meinem Skript nachgeschaut, bei mir war das 12.1.18., ganz am Anfang des Kapitels "Normalformen von Endomorphismen".

Gruß v. Angela



Bezug
                                
Bezug
f-invarianter Unterraum: Danke !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:57 Di 10.06.2008
Autor: SusanneK

Ah, werde ich nachlesen müssen !!!

VIELEN VIELEN DANK !!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]