www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenOperations Researchentartete Lösung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Operations Research" - entartete Lösung
entartete Lösung < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

entartete Lösung: Îdee?
Status: (Frage) überfällig Status 
Datum: 18:24 Di 24.11.2009
Autor: HansPeter

Aufgabe
Aufgabe 13:
Für A [mm] \in [/mm] R^(m×n) mit rg(A) = m, b [mm] \in R^m [/mm] und c [mm] \in R^n [/mm] betrachten wir das lineare Optimierungsproblem

(LP) min [mm] c^T*x [/mm]
N.B. Ax = b,
x  [mm] \ge [/mm] 0

Sei B eine Basis von A mit zugehörigen Indexvektoren B und N so, dass [mm] x=(x_B, x_N) [/mm] eine optimale Basislösung für (LP) ist.
Sei [mm] x=(x_B, x_N) [/mm] zusätzlich nicht entartet.

Zeigen Sie:
[mm] (c^T_N [/mm] − [mm] c^T_B*A^{-1}_B *A_N)^T [/mm]  [mm] \ge [/mm] 0.

Hallo!
Also ich hab mir zuerst Überlegt, dass ich die Annahme mache, dass [mm] (c^T_N [/mm] − [mm] c^T_B*A^{-1}_B *A_N)^T [/mm]  < 0. und dass ich das dann zum Widerspruch führe.

also ich hab ja eigentlich:
c*x = [mm] c_B*A^{-1}*b \ge c_B*A^{-1}_B*b [/mm] + [mm] (c^T_N [/mm] − [mm] c^T_B*A^{-1}_B *A_N)^T *xneu_N [/mm]  
weil ich weiß das [mm] x_N \ge [/mm] 0 ist und nach Annahme die Klammer also die reduizerten Kosten negativ sind ist das gesamte hinten negativ
woraus ja die Ungleichung führt.


aber das ist ja gerade ein Widerspruch zur Optimalität der Lösung x.
aber jetzt frage ich mich wo ich überhaupt einfließen lasse dass [mm] x_B [/mm] > 0 ist, also nicht entartet ist.


danke schonmal!!

        
Bezug
entartete Lösung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Do 26.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]