| binomische Formeln < Klassen 8-10 < Schule < Mathe < Vorhilfe 
 
 
  |  |  
  | 
    
     |  | Status: | (Frage) beantwortet   |   | Datum: | 22:27 Mo 28.09.2009 |   | Autor: | h4tschi | 
 
 | Aufgabe |  | Summen sind zu multiplizieren | 
 Folgende Aufgabe, Summen sind zu multiplizieren.
 
 (5x-2y)[(2x+y)(x-3y)-(x+y)(2x-3y)]
 
 und ich hab irgendwo ein Fehler, mein Rechenweg:
 
 (2x+y)(x-3y)ergibt
 2x²-6xy+xy-3y²
 
 (x+y)(2x-3y)ergibt
 2x²-3xy+2xy-3y²
 
 nun steht [2x²-6xy+xy-3y²-(2x²-3xy+2xy-3y²)]
 klammer entfernen, Vorzeichen umdrehen
 
 2x²-6xy+xy-3y²-2x²+3xy-2xy+3y²
 
 jetzt steht ja
 
 (5x-2y)(2x²-6xy+xy-3y²-2x²+3xy-2xy+3y²)
 
 ergibt
 
 10x³-30x²y+5x²y-15xy²-10x³+15x²y-10x²y+15xy²-4x²y+12xy²-2xy²+6x²y+4xy²-6y³
 
 wenn ich das zusammen streiche kommt was falsches raus, wo liegt mein Fehler???
 
 Danke!
 
 Mfg
 
 Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
 
 
 
 |  |  |  | 
 
  |  |  
  | 
    
     |  | Status: | (Antwort) fertig   |   | Datum: | 06:31 Di 29.09.2009 |   | Autor: | leduart | 
 Hallo
 Warum fasst du nicht in der langen Klammer erst zusammen? musst du das so schrecklich stehen lassen? die klammer hat nach Zusammenfassen nur noch 3 Summanden.
 Gruss leduart
 
 
 |  |  | 
 |  | 
 
  |  |  
  | 
    
     | Hallo h4tschi,
 
 schreib doch zwischen gleiche Ausdrücke ein = und fasse zusammen (das hat Leduart scho nvorgeschlagen, also statt:
 
 > (2x+y)(x-3y)ergibt
 >  2x²-6xy+xy-3y²
 
 So: (2x+y)(x-3y)= 2x²-6xy+xy-3y² = 2x²-5xy-3y²
 
 und (x+y)(2x-3y) =  2x²-3xy+2xy-3y² = 2x²- xy -3y²
 
 Nun steht in der Klammer
 [2x²-5xy -3y²-(2x²-xy-3y²)] = ...
 
 Dann wird das Weiterrechnen hier kürzer:
 > (5x-2y) [ ..... ]
 
 Gruß, MatheOldie
 
 
 |  |  | 
 
 
 |