www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraÄquivalenzrelation, Sym(M)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Äquivalenzrelation, Sym(M)
Äquivalenzrelation, Sym(M) < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation, Sym(M): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Do 30.03.2023
Autor: inkeddude

Guten Abend.

Ich bearbeite zurzeit eine Aufgabe über eine Äquivalenzrelation.
Die Aufgabe lautet:


Sei $M$ eine Menge und [mm] $\sigma \in [/mm] Sym(M)$ eine bijektive Selbstabbildung.

a. Für $a, b [mm] \in [/mm] M$ definieren wir eine Äquivalenzrelation auf $M$ durch $a [mm] \sim [/mm] b [mm] :\Leftrightarrow \exists\; [/mm] m [mm] \in \mathbb{Z}\; :\; [/mm] b = [mm] \sigma^{m}(a)$ [/mm]

b. Es sei  [mm] $\overline{a}$ [/mm] für $a [mm] \in [/mm] M$ eine endliche Äquivalenzklasse bezüglich [mm] $\sim$ [/mm] der Mächtigkeit [mm] $\vert \overline{a} \vert [/mm] = n < [mm] \infty$. [/mm] Dann gelten folgende Aussagen:

(i) Das Minimum $k = min [mm] \{ l > 0\; \vert \; \sigma^{l}(a) = a \}$ [/mm] existiert.
(ii) Für $q [mm] \in \mathbb{Z}$ [/mm] ist [mm] $\sigma^{q \cdot k}(a) [/mm] = a$
(iii) [mm] $\overline{a} [/mm] = [mm] \{a, \sigma(a), \ldots, \sigma^{k-1}(a) \}$ [/mm]
(iv) [mm] $\overline{a}$ [/mm] enthält genau $k$ Elemente.

Man muss $a)$ und $b)$ zeigen.

Bei der a) bin ich ganz gut zurecht gekommen.
Meine Lösung wäre:

Reflexivität:

Es gilt $a [mm] \sim [/mm] a$, denn es gibt ein $m [mm] \in \mathbb{Z}$ [/mm] mit $a = [mm] \sigma^{m}(a)$. [/mm] Wähle beispielsweise $m = 0$, dann ist [mm] $\sigma^{m} [/mm] = [mm] id_{M}$. [/mm] Und es gilt $a = [mm] id_{M}(a) [/mm] = [mm] \sigma^{0}(a)$ [/mm]

Symmetrie:

Es gelte $a [mm] \sim [/mm] b$, d.h. es gibt ein $m [mm] \in \mathbb{Z}$ [/mm] mit $b = [mm] \sigma^{m}(a)$. [/mm]

Wir müssen zeigen, dass $b [mm] \sim [/mm] a$, also dass ein $n [mm] \in \mathbb{Z}$ [/mm] mit $a = [mm] \sigma^{m}(b)$. [/mm]

Wir wissen, dass [mm] $\sigma^{m} \in [/mm] Sym(M)$, d.h. [mm] $\sigma^{m}$ [/mm] ist bijektiv. Da [mm] $\sigma^{m}$ [/mm] bijektiv ist, existiert die Umkehrabbildung [mm] $\left ( \sigma^{m} \right )^{- 1} [/mm] = [mm] \sigma^{- m} [/mm] $ (Gleichheit folgt aus den Potenzgesetzen für Gruppen). Für die gilt [mm] $\sigma^{- m} [/mm] (b) = a$.

Also existiert ein $n [mm] \in \mathbb{Z}$ [/mm] mit $a = [mm] \sigma^{m}(b)$, [/mm] nämlich $n = - m$.

Transitivität:

Es gelte $a [mm] \sim [/mm] b$ und $b [mm] \sim [/mm] c$.
Das heißt, es gibt $m,n [mm] \in \mathbb{Z}$ [/mm] mit $b = [mm] \sigma^{m}(a)$ [/mm] und $c = [mm] \sigma^{n}(b)$. [/mm]

Wir müssen $a [mm] \sim [/mm] c$ zeigen, d.h. es gibt ein $s [mm] \in \mathbb{Z}$ [/mm] mit $c = [mm] \sigma^{s}(a)$. [/mm]

Aus der Voraussetzung und den Potenzgesetzen für Gruppen erhält man

$c = [mm] \sigma^{n}(b) [/mm] = [mm] \sigma^{n}\left ( \sigma^{m}(a) \right [/mm] ) = [mm] \left ( \sigma^{n} \circ \sigma^{m} \right [/mm] ) (a) = [mm] \sigma^{n + m}(a)$ [/mm]

Es gibt also ein $s [mm] \in \mathbb{Z}$ [/mm] mit $c = [mm] \sigma^{s}(a)$, [/mm] nämlich $s = m + n$.


Nur bei der b) komme ich nicht weiter.
Wie zeige ich beispielsweise $(i)$?

Meine Idee war, dass ich vielleicht die erzeugte Untergruppe [mm] $\langle \sigma \rangle [/mm] = [mm] \{ \sigma^{l}\; \vert \; l \in \mathbb{Z} \}$ [/mm] betrachte.
Diese Untergruppe muss nicht endlich sein, weil $Sym(M)$ auch nicht endlich sein muss. Aber ich dachte mir, dass ich aus den Eigenschaften einer erzeugten Untergruppe eventuell die Existenz des Minimums folgern kann. Nur will mir da kein richtiger Ansatz einfallen.


Es wäre nett, wenn mir jemand helfen könnte!
Gruß, Inked

        
Bezug
Äquivalenzrelation, Sym(M): Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Do 30.03.2023
Autor: statler

Hallo!

> Ich bearbeite zurzeit eine Aufgabe über eine
> Äquivalenzrelation.
>  Die Aufgabe lautet:
>  
>
> Sei [mm]M[/mm] eine Menge und [mm]\sigma \in Sym(M)[/mm] eine bijektive
> Selbstabbildung.
>  
> a. Für [mm]a, b \in M[/mm] definieren wir eine Äquivalenzrelation
> auf [mm]M[/mm] durch [mm]a \sim b :\Leftrightarrow \exists\; m \in \mathbb{Z}\; :\; b = \sigma^{m}(a)[/mm]
>  
> b. Es sei  [mm]\overline{a}[/mm] für [mm]a \in M[/mm] eine endliche
> Äquivalenzklasse bezüglich [mm]\sim[/mm] der Mächtigkeit [mm]\vert \overline{a} \vert = n < \infty[/mm].
> Dann gelten folgende Aussagen:
>  
> (i) Das Minimum [mm]k = min \{ l > 0\; \vert \; \sigma^{l}(a) = a \}[/mm]
> existiert.
>  (ii) Für [mm]q \in \mathbb{Z}[/mm] ist [mm]\sigma^{q \cdot k}(a) = a[/mm]
>  
> (iii) [mm]\overline{a} = \{a, \sigma(a), \ldots, \sigma^{k-1}(a) \}[/mm]
>  
> (iv) [mm]\overline{a}[/mm] enthält genau [mm]k[/mm] Elemente.
>  
> Man muss [mm]a)[/mm] und [mm]b)[/mm] zeigen.
>  
> Bei der a) bin ich ganz gut zurecht gekommen.
>  Meine Lösung wäre:
>  
> Reflexivität:
>  
> Es gilt [mm]a \sim a[/mm], denn es gibt ein [mm]m \in \mathbb{Z}[/mm] mit [mm]a = \sigma^{m}(a)[/mm].
> Wähle beispielsweise [mm]m = 0[/mm], dann ist [mm]\sigma^{m} = id_{M}[/mm].
> Und es gilt [mm]a = id_{M}(a) = \sigma^{0}(a)[/mm]
>  
> Symmetrie:
>  
> Es gelte [mm]a \sim b[/mm], d.h. es gibt ein [mm]m \in \mathbb{Z}[/mm] mit [mm]b = \sigma^{m}(a)[/mm].
>  
> Wir müssen zeigen, dass [mm]b \sim a[/mm], also dass ein [mm]n \in \mathbb{Z}[/mm]
> mit [mm]a = \sigma^{m}(b)[/mm].
>  
> Wir wissen, dass [mm]\sigma^{m} \in Sym(M)[/mm], d.h. [mm]\sigma^{m}[/mm] ist
> bijektiv. Da [mm]\sigma^{m}[/mm] bijektiv ist, existiert die
> Umkehrabbildung [mm]\left ( \sigma^{m} \right )^{- 1} = \sigma^{- m}[/mm]
> (Gleichheit folgt aus den Potenzgesetzen für Gruppen).
> Für die gilt [mm]\sigma^{- m} (b) = a[/mm].
>  
> Also existiert ein [mm]n \in \mathbb{Z}[/mm] mit [mm]a = \sigma^{m}(b)[/mm],
> nämlich [mm]n = - m[/mm].
>  
> Transitivität:
>  
> Es gelte [mm]a \sim b[/mm] und [mm]b \sim c[/mm].
>  Das heißt, es gibt [mm]m,n \in \mathbb{Z}[/mm]
> mit [mm]b = \sigma^{m}(a)[/mm] und [mm]c = \sigma^{n}(b)[/mm].
>  
> Wir müssen [mm]a \sim c[/mm] zeigen, d.h. es gibt ein [mm]s \in \mathbb{Z}[/mm]
> mit [mm]c = \sigma^{s}(a)[/mm].
>  
> Aus der Voraussetzung und den Potenzgesetzen für Gruppen
> erhält man
>
> [mm]c = \sigma^{n}(b) = \sigma^{n}\left ( \sigma^{m}(a) \right ) = \left ( \sigma^{n} \circ \sigma^{m} \right ) (a) = \sigma^{n + m}(a)[/mm]
>  
> Es gibt also ein [mm]s \in \mathbb{Z}[/mm] mit [mm]c = \sigma^{s}(a)[/mm],
> nämlich [mm]s = m + n[/mm].

So weit so gut.

>  
>
> Nur bei der b) komme ich nicht weiter.
> Wie zeige ich beispielsweise [mm](i)[/mm]?
>  
> Meine Idee war, dass ich vielleicht die erzeugte
> Untergruppe [mm]\langle \sigma \rangle = \{ \sigma^{l}\; \vert \; l \in \mathbb{Z} \}[/mm]
> betrachte.
> Diese Untergruppe muss nicht endlich sein, weil [mm]Sym(M)[/mm] auch
> nicht endlich sein muss. Aber ich dachte mir, dass ich aus
> den Eigenschaften einer erzeugten Untergruppe eventuell die
> Existenz des Minimums folgern kann. Nur will mir da kein
> richtiger Ansatz einfallen.

Wie wäre es, einfach nur die Menge [mm]\{ \sigma^{l}(a) \ \textbar \ l \in \mathbb{N} \}[/mm] zu betrachten. Die ist endlich, warum? Dann können aber nicht alle Elemente paarweise verschieden sein.

> Es wäre nett, wenn mir jemand helfen könnte!

Und? Hilft der Hinweis? Sonst weiter fragen.

Gruß Dieter



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]