www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraÄquivalenzrelation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Äquivalenzrelation
Äquivalenzrelation < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Do 13.01.2005
Autor: Reaper

Beispiel:
Zeigen oder widerlegen Sie folgende Behauptung:
Sei R eine reflexive, symmetrische Relation auf A.Sei weiters:
S = {(a,c)  [mm] \in [/mm] AxA |  [mm] \exists [/mm] b  [mm] \in [/mm] A : (a,b)   [mm] \in [/mm] R  [mm] \wedge [/mm] (b,c)  [mm] \in [/mm] R)}
Dann ist R [mm] \cup [/mm] S eine Äquivalenzrelation.

Ich täte eigentlich ja sagen hab da aber komischerweise nein stehen. Weiß aber nicht obs stimmt. Bessert mich bitte aus wenn ich bei meiner Überlegung falsch liege.

Sei A = {1,2,3,4}

Dann ist z.b. R = {(1,1),(2,2),(3,3),(4,4),(1,2),(2,1),(3,2),(2,3),(3,4),(4,3)}

Jetzt ist S ja AxA sprich alle Kombinationen.

S = {....(1,3),(3,1),(2,4),(4,2)}

So und da nun in S aufgrund aller Kombinationen auch die jeweilige transitive Relation zu R vorhanden ist, ist R  [mm] \cup [/mm] S eine Äquivalenzrelation oder?
Bin mir nicht ganz sicher ob ich die Menge S richtig interpretiere. Kann mir bitte noch jemand S beschreiben in seinen eigenen Worten?



        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Do 13.01.2005
Autor: IKE

hallo Reaper,

also du interpretierst die Menge S schon richtig. Weil so wie sie dort gegeben ist, stellt S eine transitive Relation dar. Da (a,c) [mm] \in [/mm] AxA und [mm] \exists [/mm] b [mm] \in [/mm] A: (a,b) [mm] \in [/mm] R [mm] \wedge [/mm] (b,c) [mm] \in [/mm] R, gilt also:
a [mm] \sim [/mm] b [mm] \wedge [/mm] b [mm] \sim [/mm] c und es folgt dann a [mm] \sim [/mm] c [mm] \forall [/mm] a,b,c [mm] \in [/mm] R, dies ist also gerade die Transitivität
Und weil R außerdem noch reflexiv und symmetrisch ist, trifft die Behauptung also zu.
Dann ist R [mm] \cup [/mm] S mit den gegebenen Voraussetzungen eine Äquivalenzrelation, eben weil alle 3 Eigenschaften erfüllt sind.

mfg IKE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]