www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenWert einer Summe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Wert einer Summe
Wert einer Summe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wert einer Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Di 27.05.2008
Autor: silencio

Aufgabe
Berechne für alle [mm] n\in \IN: [/mm]
[mm] \summe_{i=1}^{n}\bruch{1}{k(k+2)} [/mm]

Durch Umformungen und Teleskopsumme, bin ich auf folgendes gekommen:

[mm] \summe_{i=1}^{n}\bruch{1}{k(k+2)}=\bruch{1}{2}(\summe_{i=1}^{n}\bruch{1}{k}-\bruch{1}{k+2}) [/mm]

Ich weiß auch, dass:

[mm] \summe_{i=1}^{n}\bruch{1}{(2k+1)²}= \bruch{\pi²}{8}<\summe_{i=1}^{n}\bruch{1}{k(k+2)}<\summe_{i=1}^{n}\bruch{1}{k²}=\bruch{\pi²}{6} [/mm]

Aber wie kann ich nun den genauen Wert der Summe für alle [mm] n\in\IN [/mm] berechnen

        
Bezug
Wert einer Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Di 27.05.2008
Autor: Marc

Hallo silencio,

> Berechne für alle [mm]n\in \IN:[/mm]
>  
> [mm]\summe_{i=1}^{n}\bruch{1}{k(k+2)}[/mm]
>  Durch Umformungen und Teleskopsumme, bin ich auf folgendes
> gekommen:
>  
> [mm]\summe_{i=1}^{n}\bruch{1}{k(k+2)}=\bruch{1}{2}(\summe_{i=1}^{n}\bruch{1}{k}-\bruch{1}{k+2})[/mm]

Bis auf die Benennung der Indexvariable ist das in Ordnung.
Diese endliche Summe musst du jetzt doch nur mal hinschreiben und schauen, welche Summanden sich wegheben. Die restlichen Summanden sind dann das Ergebnis.

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]