www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWahrscheinlichkeit umwandeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeit umwandeln
Wahrscheinlichkeit umwandeln < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit umwandeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 Fr 20.06.2008
Autor: goujou

Aufgabe
Sei [mm] (\Omega, [/mm] A, P) ein Wahrscheinlichkeitsraum und X,Y reelle Zufallsvariablen auf diesem Raum so, dass X und X-Y unabhängig sind. K sei eine Teilmenge der reellen Zahlen. Dann gilt

[mm] P(X \in K)=\integral_{R}{P(Y+z \in K)P(X-Y \in dz)} [/mm]

Nun scheint ja offensichtlich auf der rechten Seite unter dem Integral etwas nicht zu stimmen, wohl ein Druckfehler. Nun zerbreche ich mir schon tagelang den Kopf, was da wohl wirklich stehen muss. Der erste Faktor unter dem Integral ist definitiv richtig, zu korrigieren gilt es nur den zweiten.

Ich habe schon versucht, irgendwie mit der Formel der totalen Wahrscheinlichkeit zu arbeiten, sodass als zweiter Faktor unter dem Integral stehen würde P(X-Y=z) dz. Allerdings ist das wohl keine disjunkte Aufteilung und funktioniert scheinbar nicht.

Vielen Dank, falls mir da jemand helfen kann.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeit umwandeln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Fr 20.06.2008
Autor: Blech


> Sei [mm](\Omega,[/mm] A, P) ein Wahrscheinlichkeitsraum und X,Y
> reelle Zufallsvariablen auf diesem Raum so, dass X und X-Y
> unabhängig sind. K sei eine Teilmenge der reellen Zahlen.

So wie ich das sehe, müssen Y und X-Y unabhängig sein, nicht X und X-Y.

> [mm]P(X \in K)=\integral_{\IR}{P(Y+z \in K)P(X-Y \in dz)}[/mm]

Das Integral stimmt schon so. Für [mm] $\IN$ [/mm] wäre die entsprechende Formel
[mm] $P(X\in K)=\sum_{z\in\IN}P(Y+z\in [/mm] K)P(X-Y=z)$

Für [mm] $z\in\IR$ [/mm] gilt i.a. $P(X-Y=z)=0$, also betrachtest Du infinitesimale Intervalle dz und integrierst über alle solchen Intervalle.


Bezug
        
Bezug
Wahrscheinlichkeit umwandeln: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:29 Fr 20.06.2008
Autor: goujou

Aufgabe
Also können wir ein [mm]z_0=z_0(K)[/mm] finden, sodass

[mm]P(Y+z_0 \in K) \geq P(X \in K)[/mm]

Natürlich müssen Y und X-Y unabhängig sein, mein Fehler, danke.
Hab mir das ganze jetzt nochmal zu Gemüte geführt und bin auch der Meinung, dass das so stimmt.

Jetzt hätte ich noch eine kleine Frage im Anschluss, ich stehe heut nämlich wirklich auf dem Schlauch.

Frage, siehe oben. Hier nochmal die Formel:
[mm]P(X \in K)=\integral_{R}{P(Y+z \in K)P(X-Y=z)dz}[/mm]


Bezug
                
Bezug
Wahrscheinlichkeit umwandeln: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mi 25.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]