www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenUmkehrabbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Umkehrabbildung
Umkehrabbildung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Do 05.05.2011
Autor: Theoretix

Aufgabe
Gegeben sei die Abbildung f: [mm] \IR^2\to\IR^2, [/mm] welche für [mm] (x,y)\in\IR^2 [/mm] durch

[mm] f(x,y)=\pmat{ cos(x) & cosh(x) \\ sin(x) & sinh(x) } [/mm] erklärt ist.

Untersuchen Sie f auf (lokale)Umkehrbarkeit.

Hallo,

es gibt doch einen Satz über Inverse Funktionen, der besagt:

Sei [mm] f\in C^1(G\to\IR^m), [/mm] wobei [mm] g\subset \IR^m [/mm] eine offene, konvexe Menge ist. Und es sei ein Punkt [mm] x_0\in [/mm] G gegeben und auch [mm] y_0=f(x_0). [/mm] Man nehme an y’ sei nahe [mm] y_0. [/mm] Dann gilt:

[mm] \exists \varepsilon [/mm] >0: [mm] \forall y’\in f((B_{\varepsilon}(x_0)) \exists^1x’\in\B_{\varepsilon}(x_0): [/mm] f(x’)=y’. Die Abblidung [mm] y’\mapsto [/mm] g(y’)=x’ ist differenzierbar und es gilt:

[mm] g’(y)=(f’(x))^{-1}, [/mm] y=f(x), [mm] \vert\vert y-y_0\vert\vert<\varepsilon. [/mm]

Kann ich mit dieser Definition ansetzen?

Um meine Abbildung auf lokale Umkehrbarkeit zu untersuchen, müsste ich doch erstmal Punkte finden, an denen die Abbildung umkehrbart ist, um dann hier ansetzen zu können, oder?

Gruß

        
Bezug
Umkehrabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Do 05.05.2011
Autor: Al-Chwarizmi


> Gegeben sei die Abbildung f: [mm]\IR^2\to\IR^2,[/mm] welche für
> [mm](x,y)\in\IR^2[/mm] durch
>  
> [mm]f(x,y)=\pmat{ cos(x) & cosh(x) \\ sin(x) & sinh(x) }[/mm]
> erklärt ist.
>  
> Untersuchen Sie f auf (lokale)Umkehrbarkeit.
>  Hallo,
>  
> es gibt doch einen Satz über Inverse Funktionen, der
> besagt:
>  
> Sei [mm]f\in C^1(G\to\IR^m),[/mm] wobei [mm]g\subset \IR^m[/mm] eine offene,
> konvexe Menge ist. Und es sei ein Punkt [mm]x_0\in[/mm] G gegeben
> und auch [mm]y_0=f(x_0).[/mm] Man nehme an y’ sei nahe [mm]y_0.[/mm] Dann
> gilt:
>  
> [mm]\exists \varepsilon[/mm] >0: [mm]\forall y’\in f((B_{\varepsilon}(x_0)) \exists^1x’\in\B_{\varepsilon}(x_0):[/mm]
> f(x’)=y’. Die Abblidung [mm]y’\mapsto[/mm] g(y’)=x’ ist
> differenzierbar und es gilt:
>  
> [mm]g’(y)=(f’(x))^{-1},[/mm] y=f(x), [mm]\vert\vert y-y_0\vert\vert<\varepsilon.[/mm]
>  
> Kann ich mit dieser Definition ansetzen?
>  
> Um meine Abbildung auf lokale Umkehrbarkeit zu untersuchen,
> müsste ich doch erstmal Punkte finden, an denen die
> Abbildung umkehrbart ist, um dann hier ansetzen zu können,
> oder?
>  
> Gruß


Hallo Theoretix,

ich frage mich sehr, und ich frage dich: ist die
Aufgabenstellung korrekt wiedergegeben ??


Erstens: die Gleichung

     [mm]f(x,y)=\pmat{ cos(x) & cosh(x) \\ sin(x) & sinh(x) }[/mm]

beschreibt gar keine Funktion von [mm] \IR^2 [/mm] nach [mm] \IR^2, [/mm]
sondern von [mm] \IR^2 [/mm] in den Raum der reellen 2x2-Matrizen.
Oder soll etwa Folgendes gemeint sein ?

     [mm]f(x,y)=\pmat{ cos(x) *cosh(x) \\ sin(x)*sinh(x) }[/mm]

Zweitens: da auf der rechten Seite der angegebenen
Gleichung y gar nicht auftritt, ist es für keinen
Bildpunkt (Bild-Matrix) f(x,y) möglich, daraus das
Urbild (x,y) eindeutig zu rekonstruieren.

Gib also bitte zuerst die Aufgabenstellung in klar
verständlicher Weise an.

LG    Al-Chw.




Bezug
                
Bezug
Umkehrabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Do 05.05.2011
Autor: Theoretix

Hallo,

Also in der originalen Aufgabenstellung stehen dazwischen keine [mm] \cdot [/mm] auf, jedoch kann es sein, dass davon ausgegangen wird.
Und zu zweitens: Tut mir leid, selbstverständlich steht jeweils im zweiten Argument ein y, also:

$ [mm] f(x,y)=\pmat{ cos(x) \cdot{}cosh(y) \\ sin(x)\cdot{}sinh(y) } [/mm] $

Ich hoffe, so ist es verständlich dargestellt.

Grüße

Bezug
                        
Bezug
Umkehrabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Do 05.05.2011
Autor: MathePower

Hallo Theoretix,

> Hallo,
>  
> Also in der originalen Aufgabenstellung stehen dazwischen
> keine [mm]\cdot[/mm] auf, jedoch kann es sein, dass davon
> ausgegangen wird.
>  Und zu zweitens: Tut mir leid, selbstverständlich steht
> jeweils im zweiten Argument ein y, also:
>  
> [mm]f(x,y)=\pmat{ cos(x) \cdot{}cosh(y) \\ sin(x)\cdot{}sinh(y) }[/mm]


Für die lokale Umkehrbarkeit ist die
[]Funktionaldeterminante  von f zu untersuchen.


>  
> Ich hoffe, so ist es verständlich dargestellt.
>  
> Grüße


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]