www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungSummenregel und Faktorregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Summenregel und Faktorregel
Summenregel und Faktorregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenregel und Faktorregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Mi 23.02.2011
Autor: Kreuzkette

Soo, nach langem Suchen hoffe ich, dass mir hier geholfen werden kann..

Habe schon woanders und in bereits vorhanden foren gesucht, aber es entweder nicht nachvollziehen können oder es war was anderes.

Ich soll eine Gleichung der Tangente und der Normalen an den Graphen von f in P(x0,f(x0)) bestimmen.

gegeben ist: f(x)=8x - 2/3 x³; x0=3/2

nun würde ich zuerst die ableitung f'bilden?!:
also: f(x) = -2x² + 8

wie geht es weiter?
könnt ihr mir helfen?
lg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Summenregel und Faktorregel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Mi 23.02.2011
Autor: MathePower

Hallo Kreuzkette,


[willkommenmr]


> Soo, nach langem Suchen hoffe ich, dass mir hier geholfen
> werden kann..
>  
> Habe schon woanders und in bereits vorhanden foren gesucht,
> aber es entweder nicht nachvollziehen können oder es war
> was anderes.
>  
> Ich soll eine Gleichung der Tangente und der Normalen an
> den Graphen von f in P(x0,f(x0)) bestimmen.
>  
> gegeben ist: f(x)=8x - 2/3 x³; x0=3/2
>  
> nun würde ich zuerst die ableitung f'bilden?!:
>  also: f(x) = -2x² + 8
>  
> wie geht es weiter?


Jetzt bilde aus den berechneten Wertean an der Stelle [mm]x_[0}[/mm] eine Gerade.

Verwende dazu  die  Punkt-Steigungs-Form einer Geraden.


>  könnt ihr mir helfen?
>  lg
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Summenregel und Faktorregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 Mi 23.02.2011
Autor: Kreuzkette

dann habe ich..

y=8 (x-3/2) + 2/3 x³



Bezug
                        
Bezug
Summenregel und Faktorregel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Mi 23.02.2011
Autor: MathePower

Hallo Kreuzkette,

> dann habe ich..
>  
> y=8 (x-3/2) + 2/3 x³
>  
>  


Du hast Doch folgende Gleichung:

[mm]\bruch{y-f\left(x_{0}\right)}{x-x_{0}}=f'\left(x_{0}\right)[/mm]

Diese Gleichung jetzt nach y auflösen.


Gruss
MathePower

Bezug
                                
Bezug
Summenregel und Faktorregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 Mi 23.02.2011
Autor: Kreuzkette

dann habe ich..

y= f`(x0) * (x-x0) +f(x0)

lg

Bezug
                                        
Bezug
Summenregel und Faktorregel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Mi 23.02.2011
Autor: MathePower

Hallo Kreuzkette,

> dann habe ich..
>  
> y= f'(x0) * (x-x0) +f(x0)
>  


Und jetzt den Funktionswert und den Ableitungswert
an der Stelle [mm]x_{0}[/mm] einsetzen.


> lg


Gruss
MathePower

Bezug
                                                
Bezug
Summenregel und Faktorregel: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 19:15 Mi 23.02.2011
Autor: Kreuzkette

also:

y= f`(3/2) * (x-3/2) + f(3/2)

sonst kann ichs nicht :(

Bezug
                                                        
Bezug
Summenregel und Faktorregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:19 Mi 23.02.2011
Autor: Adamantin


> also:
>  
> y= f'(3/2) * (x-3/2) + f(3/2)
>  
> sonst kann ichs nicht :(

[ok] völlig richtig

Das kannst du doch ausrechnen! f'(x) hast du selbst im ersten Post hingeschrieben, jetzt setzte da [mm] x_0 [/mm] ein! [mm] f(x_0) [/mm] hast du ebenfalls schnell heraus, setzte einfach [mm] x_0 [/mm] in f(x) ein ;) Und danach klammerst du noch aus und hast deine Gleichung, oder noch andere Probleme? ;)

Bezug
                                                                
Bezug
Summenregel und Faktorregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 Mi 23.02.2011
Autor: Kreuzkette

und was habe ich dann?
kann mir das nicht einmal einer vorrechnen, oder mit zahlen zeigen?
ich blick da langsam echt nicht mehr durch, tut  mir leid..


Bezug
                                                                        
Bezug
Summenregel und Faktorregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:37 Mi 23.02.2011
Autor: Adamantin

f(x)=8x - 2/3 x³
x0_= [mm] \bruch{3}{2} [/mm]
f'(x) = -2x² + 8

also:

[mm] y=[-2*(\bruch{3}{2})^2+8]*(x-\bruch{3}{2})+8*\bruch{3}{2}-\bruch{2}{3}*(\bruch{3}{2})^3 [/mm]

Bezug
                                                                                
Bezug
Summenregel und Faktorregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:42 Mi 23.02.2011
Autor: Kreuzkette

danke schonmal, so kann ich das aufjedenfall schonmal besser nachvollziehen..
nur, habe ich jetzt die normale oder tangente?

Bezug
                                                                                        
Bezug
Summenregel und Faktorregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:47 Mi 23.02.2011
Autor: Adamantin

Was glaubst du denn? ;)

Die Steigung m im Punkt [mm] x_0 [/mm] ist [mm] f'(x_0), [/mm] korrekt? Diese Steigung haben wir in der Gleichung der Tangenten auch benutzt, daher ist es die Tangente. Die Normale steht orthogonal auf der Tangenten, hat also die Steigung:

[mm] m_t*m_n=-1 [/mm] => [mm] m_n=-\bruch{1}{m_t} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]