www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungStetige Differenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Stetige Differenzierbarkeit
Stetige Differenzierbarkeit < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetige Differenzierbarkeit: Hilfe bitte :(
Status: (Frage) beantwortet Status 
Datum: 23:54 Do 11.02.2010
Autor: mathen00b91

Aufgabe
f a,b (x):=   [mm] 28*\wurzel{1+(b/2)x} [/mm]    falls:   0 [mm] \le [/mm] x [mm] \le [/mm] 6144*b
                   a+b*x    falls:   x > 6144*b

Bestimme die Parameter a,b > 0 so, dass die Funktion f a,b (x) auf [0;+ [mm] \infty [/mm] ] stetig differenzierbar ist.

Hallo Leute,

ich bin im Moment in der Prüfungsvorbereitungszeit und komme mit der Bestimmung der stetigen Differenzierbarkeit von Funktionen leider einfach nicht zurecht. Egal was ich mache; immer kommt was komisches und falsches raus :(
Kann mir vielleicht jemand anhand der angegeben Aufgabe zeigen, wie man das richtig macht? Wäre echt nett! =)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Stetige Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 01:02 Fr 12.02.2010
Autor: kalkulator


> f a,b (x):=   [mm]28*\wurzel{1+(b/2)x}[/mm]    falls:   0 [mm]\le[/mm] x [mm]\le[/mm]
> 6144*b
>                     a+b*x    falls:   x > 6144*b

>  
> Bestimme die Parameter a,b > 0 so, dass die Funktion f a,b
> (x) auf [0;+ [mm]\infty[/mm] ] stetig differenzierbar ist.
>  Hallo Leute,
>  
> ich bin im Moment in der Prüfungsvorbereitungszeit und
> komme mit der Bestimmung der stetigen Differenzierbarkeit
> von Funktionen leider einfach nicht zurecht. Egal was ich
> mache; immer kommt was komisches und falsches raus :(
>  Kann mir vielleicht jemand anhand der angegeben Aufgabe
> zeigen, wie man das richtig macht? Wäre echt nett! =)
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

Hallo mathen00b91,

an der Stelle, an der sich die beiden gegebenen Funktionsvorschriften "treffen" (also in diesem Fall bei $6144b$) sollten ihre Ableitungen gleich sein. Beide Funktionsvorschriften ableiten und die Ableitungen an der o.g. Stelle gleichsetzen.

Außerdem sollten dort  auch die Funktionswerte beider Vorschriften gleich sein. Also Funktionswerte an der Stelle gleichsetzen.

Jetzt ein Gleichungssystem mit 2 Gleichungen und 2 unbekannten Lösen.

Falls Das Probleme macht: einfach mal hier im Forum vorrechnen, dann findet sich bestimmt jemand, der es korrigiert

viele Grüße vom Kalkulator

Bezug
                
Bezug
Stetige Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:38 Fr 12.02.2010
Autor: mathen00b91

Hallo,

danke für die Tipps bzw Erklärung! :)

Ich habe das jetzt mal eben auf die Schnelle durchgerechnet und bin auf a = 100 und b = 0.125 gekommen. Kann das eventuell jemand überprüfen und mir sagen, ob ich richtig liege?


Bezug
        
Bezug
Stetige Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Fr 12.02.2010
Autor: kalkulator

Hallo mathen00b91,

Dein Ergebnis ist richtig. Na also, klappt doch und ist nicht zu schwer. allerdings Hast Du
beim Wurzelziehen einmal vergessen, dass ein [mm] $\pm$ [/mm] entsteht, so dass es noch eine weitere Lösung gibt. Die Antwort hat so lange gedauert, weil ich jetzt erst wieder im Forum reingeschaut habe. Tipp: deklariere Deine Antwort auf Hinweise immer als Frage, nur dann werden auch andere Forumsteilnehmer darauf aufmerksam und helfen weiter. Dadurch gehts dann viel schneller mit der Antwort.

viel Erfolg beim Lernen,

Grüße vom Kalkulator

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]