www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteSpektrum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Spektrum
Spektrum < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spektrum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 So 25.04.2010
Autor: jack21

Aufgabe
Sei K ein Körper und V ein n-dim. K-Vektorraum mit n [mm] \in \IN. [/mm] Weiter sei [mm] \phi \in [/mm] End(V) mit [mm] \phi [/mm] ^{m}=0 für ein m [mm] \in \IN, [/mm] m [mm] \le [/mm] n.
Zeigen Sie [mm] Spek(\phi)={0}. [/mm] Wann ist [mm] \phi [/mm] diagonalisierbar?

Hallo,
ich hab Probleme mit der o.g. Aufgabe:

Mein Ansatz bisher:
[mm] \phi=\phi^{2} \rightarrow \phi^{m}=\phi=0 [/mm]
[mm] Det(\phi-a\*id_{v})=0 \gdw Det(\phi)=0 [/mm]

bzgl. diagonalisierbar: falls es eine invertierbare Matrix T [mm] \in K^{n \* n} [/mm] gibt, so dass [mm] T^{-1}AT [/mm] diagonal
da aber [mm] Det(\phi)=0, [/mm] ist [mm] \phi [/mm] nicht invertierbar, also ist [mm] \phi [/mm] nicht diagonalisierbar.

Ist das so richtig? Oder hab ich da was falsch verstanden?

grüße jack

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Spektrum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:02 Mo 26.04.2010
Autor: fred97


> Sei K ein Körper und V ein n-dim. K-Vektorraum mit n [mm]\in \IN.[/mm]
> Weiter sei [mm]\phi \in[/mm] End(V) mit [mm]\phi[/mm] ^{m}=0 für ein m [mm]\in \IN,[/mm]
> m [mm]\le[/mm] n.
>  Zeigen Sie [mm]Spek(\phi)={0}.[/mm] Wann ist [mm]\phi[/mm]
> diagonalisierbar?
>  Hallo,
>  ich hab Probleme mit der o.g. Aufgabe:
>  
> Mein Ansatz bisher:
>  [mm]\phi=\phi^{2} \rightarrow \phi^{m}=\phi=0[/mm]
>  
> [mm]Det(\phi-a\*id_{v})=0 \gdw Det(\phi)=0[/mm]


Da gehts aber drunter und drüber ! Völlig unverständlich.


>  
> bzgl. diagonalisierbar: falls es eine invertierbare Matrix
> T [mm]\in K^{n \* n}[/mm] gibt, so dass [mm]T^{-1}AT[/mm] diagonal
>  da aber [mm]Det(\phi)=0,[/mm] ist [mm]\phi[/mm] nicht invertierbar, also ist
> [mm]\phi[/mm] nicht diagonalisierbar.
>  
> Ist das so richtig? Oder hab ich da was falsch verstanden?


Ich denke ja.

Zunächst zum spektrum: Sei [mm] \lambda [/mm] ein Eigenvert von [mm] \phi. [/mm] Es ex. also ein x [mm] \in [/mm] V mit x [mm] \ne [/mm] 0 und [mm] \phi(x) [/mm] = [mm] \lambda [/mm] x.

Wegen [mm] \phi^m=0 [/mm] ist dann: 0= [mm] \phi^m(x) [/mm] = [mm] \lambda^mx. [/mm] Damit ist [mm] \lambda [/mm] = 0

[mm] \phi [/mm] hat also nur den Eigenwert 0

Diagonalisierbarkeit:  [mm] \phi [/mm] ist diagonalisierbar [mm] \gdw [/mm] V besitzt eine Basis aus Eigenvektoren von [mm] \phi [/mm]  

Hilft das ?

FRED


>  
> grüße jack
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Spektrum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:37 Mo 26.04.2010
Autor: jack21

soweit habe ich das jetzt verstanden.

wenn [mm] \phi^{m}=0 [/mm] folgt daraus [mm] \phi=0 [/mm] und weil [mm] \phi [/mm] nur den Eigenwert 0 besitzt, ist [mm] \phi [/mm] nicht diagonaliesierbar, weil kein Eigenvektor ex.
Stimmt das?
Wenn ja, dann ist [mm] \phi [/mm] nur diagonalisierbar, wenn  [mm] \phi \ne [/mm] 0, oder?

Bezug
                        
Bezug
Spektrum: Antwort
Status: (Antwort) fertig Status 
Datum: 06:29 Di 27.04.2010
Autor: fred97


> soweit habe ich das jetzt verstanden.
>  
> wenn [mm]\phi^{m}=0[/mm] folgt daraus [mm]\phi=0[/mm]

Unfug !!!


> und weil [mm]\phi[/mm] nur den
> Eigenwert 0 besitzt, ist [mm]\phi[/mm] nicht diagonaliesierbar, weil
> kein Eigenvektor ex.




Unfug !  

[mm] \phi [/mm] besitzt den Eigenwert 0, Sei E der zugeh. Eigenraum, also E = [mm] kern(\phi). [/mm]

Dann: [mm] \phi [/mm] ist diagonalisierbar [mm] \gdw [/mm] E=V [mm] \gdw \phi=0 [/mm]

FREd

>  Stimmt das?
>  Wenn ja, dann ist [mm]\phi[/mm] nur diagonalisierbar, wenn  [mm]\phi \ne[/mm]
> 0, oder?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]