www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisResiduenkalkül
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Residuenkalkül
Residuenkalkül < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Residuenkalkül: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:13 Mi 28.07.2004
Autor: Joergi

So nun meine zweite Frage:

Berchnen Sie mit Hilfe des Residuenkalküls das Integral
[mm]\integral_{-\infty}^{\infty}\bruch{1}{(5+4x+x^2)^2}\,dx[/mm]

Meine Lösung dazu lautet: [mm]\bruch{\pi}{2}[/mm]

Wäre auch hierbei schön, wenn da mal jemand drüber schaut

Danke

        
Bezug
Residuenkalkül: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Fr 30.07.2004
Autor: Stefan

Lieber Joergi!

Ja, dein Ergebnis ist richtig. Allerdings wäre es hilfreich, wenn du demnächst auch die Rechenschritte hier hereinstellen würdest. So musste ich alles komplett selber noch einmal rechnen. Über eine andere Rechnung drüberschauen geht da doch wesentlich einfacher.

Nur zur Kontrolle:

Die vor- oder drittletzte Zeile lautet:

[mm] $2\pi [/mm] i [mm] \cdot \frac{-2}{(-2+i - (-2-i))^3}$, [/mm]

bei dir auch?

Liebe Grüße
Stefan

Bezug
                
Bezug
Residuenkalkül: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 Fr 30.07.2004
Autor: Joergi

Ja genau und sorry wegen der Rechnung.
Werde ich beim nächsten Mal nicht mehr machen.

Danke aber für deine Mühe.

Das ist echt super hier im Matheraum.

Gruß Jörg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]