www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungPartialbruchzerlegung-Einführ.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Partialbruchzerlegung-Einführ.
Partialbruchzerlegung-Einführ. < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung-Einführ.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Mo 09.04.2012
Autor: pc_doctor

Aufgabe
Berechnen Sie das unbestimmte Integral der Funktion f(x) = [mm] \bruch{-4}{x*(x-4)} [/mm]

Hallo,

wir sollen uns mal in den Ferien die Partialbruchzerlegung angucken , so als Einführung.

Ich habe hier eine Beispielaufgabe mit der oben genannten Funktion , allerdings verstehe ich da einiges nicht:

Die gehen hier so vor :
f(x) = [mm] \bruch{-4}{x*(x-4)} [/mm]

Nullstellen 0 und 4 , okay verstehe ich noch.

Und jetzt , Teilbruchzerlegung von f :

[mm] \bruch{-4}{x*(x-4)} [/mm] = [mm] \bruch{a}{x} [/mm] + [mm] \bruch{b}{x-4} [/mm]

Okay warum jetzt die Nenner auf der rechten Seite anders sind , verstehe ich , das sind die Nullstellen von f.

Aber warum ist da ein Plus ? Muss man immer ein Plus hinschreiben ?

Und dann schreibe die hier : Multiplikation mit dem Nenner x*(x-4)

Daraus entsteht folgendes :

-4 = a*(x-4) + b *x

Okay verstehe ich auch noch

Und jetzt : Ordnen anch Potenzen von x

-4 = (a+b) * x -a *4

Koeffizientenvergleich :

a+b = 0
a = 1
Wie kommen die jetzt auf das ?

Und warum muss die Bedingung gelten , dass a mit b addiert Null ergeben soll ? Warum Null ?

Vielen Dank schonmal im Voraus.

Frohe Ostern :D



        
Bezug
Partialbruchzerlegung-Einführ.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Mo 09.04.2012
Autor: donquijote


> Berechnen Sie das unbestimmte Integral der Funktion f(x) =
> [mm]\bruch{-4}{x*(x-4)}[/mm]
>  Hallo,
>  
> wir sollen uns mal in den Ferien die Partialbruchzerlegung
> angucken , so als Einführung.
>  
> Ich habe hier eine Beispielaufgabe mit der oben genannten
> Funktion , allerdings verstehe ich da einiges nicht:
>  
> Die gehen hier so vor :
>  f(x) = [mm]\bruch{-4}{x*(x-4)}[/mm]
>  
> Nullstellen 0 und 4 , okay verstehe ich noch.
>  
> Und jetzt , Teilbruchzerlegung von f :
>  
> [mm]\bruch{-4}{x*(x-4)}[/mm] = [mm]\bruch{a}{x}[/mm] + [mm]\bruch{b}{x-4}[/mm]
>  
> Okay warum jetzt die Nenner auf der rechten Seite anders
> sind , verstehe ich , das sind die Nullstellen von f.

ja

>  
> Aber warum ist da ein Plus ? Muss man immer ein Plus
> hinschreiben ?

a und b sind ja zunächst erstmal unbestimmt. Wenn am Ende ein negatives b rauskommt, wird aus dem Plus ein Minus. Der allgemeine Partialbruchansatz sagt aber, dass man immer mit der Form [mm]\bruch{a}{x}[/mm] + [mm]\bruch{b}{x-4}[/mm] beginnen kann.

>  
> Und dann schreibe die hier : Multiplikation mit dem Nenner
> x*(x-4)
>  
> Daraus entsteht folgendes :
>  
> -4 = a*(x-4) + b *x
>
> Okay verstehe ich auch noch
>  
> Und jetzt : Ordnen anch Potenzen von x
>
> -4 = (a+b) * x -a *4
>  
> Koeffizientenvergleich :

Die Gleichung muss für alle x gelten. Wenn du x=0 einsetzt, erkennst du, dass die konstanten Terme links und rechts gleich sein müssen, also [mm] -4=-4a\Leftrightarrow [/mm] a=1
Und dann kann man sich überlegen, dass auch die Koeffizienten von x links und rechts gleich sein müssen, damit die Gleichung für alle x erfüllt ist. Da links kein x vorkommt, kann man schreiben
0*x $-4=$ (a+b)*x [mm] $-4a\Rightarrow [/mm] 0=a+b$

>  
> a+b = 0
>  a = 1
>  Wie kommen die jetzt auf das ?
>  
> Und warum muss die Bedingung gelten , dass a mit b addiert
> Null ergeben soll ? Warum Null ?
>
> Vielen Dank schonmal im Voraus.
>  
> Frohe Ostern :D
>  
>  


Bezug
                
Bezug
Partialbruchzerlegung-Einführ.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:40 Mo 09.04.2012
Autor: pc_doctor

Achsoo , alles klar vielen Dank :D



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]