www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperOrdnung von GL_2(Z)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Ordnung von GL_2(Z)
Ordnung von GL_2(Z) < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnung von GL_2(Z): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Mi 10.10.2007
Autor: Manabago

Hi nochmal! Wir haben bisher in Algebra nur die Gruppenaxiome definiert. Und jetzt soll ich folgende Frage beantworten:
Sei [mm] GL_{2}(\IZ) [/mm] = {A [mm] \in M_{2}(\IZ): det(A)=\pm1 [/mm] } die Menge der invertierbaren 2x2 Matrizen über [mm] \IZ. [/mm] Ich möchte jetzt zeigen, dass ein Element endlicher Ordnung in [mm] GL_{2}(\IZ) [/mm] (dh [mm] A^n=E_{n}) [/mm] die Ordnung 1,2,3,4 oder 6 hat.

Ich hab keine Ahnung wie ich da rangehn soll. Den Begriff Ordnung haben wir noch nicht einmal richtig definiert (hab ich von wikipedia). Kann man diese Aufgabe ohne weiteres Algebrawissen überhaupt lösen? Lg

        
Bezug
Ordnung von GL_2(Z): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:23 Mi 10.10.2007
Autor: Manabago

Hat denn hier wirklich noch niemand eine Algebra-VO besucht? Lg

Bezug
        
Bezug
Ordnung von GL_2(Z): Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 Do 11.10.2007
Autor: angela.h.b.


> Hi nochmal! Wir haben bisher in Algebra nur die
> Gruppenaxiome definiert. Und jetzt soll ich folgende Frage
> beantworten:
> Sei [mm][mm] GL_{2}(\IZ)= [/mm] {A [mm] \in M_{2}(\IZ): det(A)=\pm1} [/mm] die
> Menge der invertierbaren 2x2 Matrizen über [mm][mm] \IZ. [/mm] Ich möchte
> jetzt zeigen, dass ein Element endlicher Ordnung in
> [mm] GL_{2}(\IZ) [/mm] (dh [mm] A^n=E_{n}) [/mm] die Ordnung 1,2,3,4 oder 6 hat.

EDITIERT:

Hallo,

Für die Untergruppe der orthogonalen Matrizen über [mm] \IZ, O_2(\IZ), [/mm] kann man es so zeigen:

Diese stellen Achsenspiegelungen (für det=-1) und Drehungen (für det=1) dar, vermutlich war das in der Linearen Algebra dran.

Die Ordnung von Achsenspiegelungen ist 2.

Man muß sich also überlegen, welche Drehungen vorkommen können.

Die Drehmatrizen in [mm] O_2(\IZ) [/mm] sind ähnlich (Basistransformation) zu  [mm] \pmat{ cosx & -sinx \\ sinx & cosx }. [/mm]

Da die Spuren ähnicher Matrizen gleich sind und die Spur einer [mm] \IZ-Matrix [/mm] eine ganze Zahl ist, muß also

[mm] 2cox\in \IZ [/mm]  sein.

Also ist [mm] cosx\in\{0,\pm\bruch{1}{2}, \pm 1\}, [/mm] woraus Du die möglichen Drehwinkel ermitteln kannst. Zu den Ordnungen ist es dann nicht mehr weit.

Gruß v. Angela








Bezug
                
Bezug
Ordnung von GL_2(Z): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:42 Fr 26.10.2007
Autor: Manabago

Dieser Lösungsweg wäre zwar schön, aber leider nicht korrekt! Man kann leicht eine Matrix über Z finden, die Determinante 1 hat, aber sicher nicht orthogonal ist. Wenn man sich klar macht, das als Eigenwerte nur die Einheitswurzeln in Frage kommt, und sich dann das cP berechnet, kommt man zur Lösung. Lg

Bezug
                        
Bezug
Ordnung von GL_2(Z): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:27 Fr 26.10.2007
Autor: angela.h.b.


> Man kann leicht eine Matrix über Z finden, die
> Determinante 1 hat, aber sicher nicht orthogonal ist.

Da hast Du natürlich völlig recht, gut, daß Du es gemerkt hast.
Ich habe das nur für eine Untergruppe der geforderten Gruppe gezeigt.
Für diese Untergruppe allerdings ist der Beweis sehr hübsch...

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]