www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenOrdnung der alternierenden Gr
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Determinanten" - Ordnung der alternierenden Gr
Ordnung der alternierenden Gr < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnung der alternierenden Gr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 Mi 27.01.2010
Autor: Doemmi

Aufgabe
Man bestimme die Anzahl der Elemente der alternierenden Gruppe [mm] A_{n}. [/mm] (Tipp: Konstruiere eine Bijektion [mm] \psi: A_{n} \to S_{n} [/mm] - [mm] A_{n} [/mm] )

Ich weiß, dass die Anzahl der Elemente n!/2 beträgt.
Es ist die Anzahl der Permutationen, die eine gerade Anzahl an Fehlständen haben, deren Signum also 1 ist.
Mir erscheint es eigentlich völlig logisch, dass gleich viele gerade Permutationen wie ungerade gibt, aber ich weiß nicht, wie ich es zeigen soll.
Der Tipp sagt mir rein garnichts.

Wir haben definiert:

[mm] A_{n} [/mm] = { [mm] \pi \in S_{n} [/mm] | [mm] sgn\pi [/mm] = 1 }

[mm] S_{n} [/mm] - [mm] A_{n} [/mm] = { [mm] \pi \in S_{n} [/mm] | [mm] sgn\pi [/mm] = -1 }

[mm] S_{n} [/mm] - [mm] A_{n} [/mm] = [mm] rA_{n} [/mm] = [mm] A_{n}r [/mm]  , r [mm] \in S_{n} [/mm] ist ungerade Permutation

        
Bezug
Ordnung der alternierenden Gr: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Mi 27.01.2010
Autor: pelzig


> Man bestimme die Anzahl der Elemente der alternierenden
> Gruppe [mm]A_{n}.[/mm] (Tipp: Konstruiere eine Bijektion [mm]\psi: A_{n} \to S_{n}[/mm]
> - [mm]A_{n}[/mm] )
>  Ich weiß, dass die Anzahl der Elemente n!/2 beträgt.
>  Es ist die Anzahl der Permutationen, die eine gerade
> Anzahl an Fehlständen haben, deren Signum also 1 ist.
>  Mir erscheint es eigentlich völlig logisch, dass gleich
> viele gerade Permutationen wie ungerade gibt, aber ich
> weiß nicht, wie ich es zeigen soll.
>  Der Tipp sagt mir rein garnichts.

Probiers doch mal mit der Abbildung [mm] $f:A_n\ni \varphi\mapsto\varphi\circ\tau_{12}\in S_n-A_n$, [/mm] wobei [mm] $\tau_{12}$ [/mm] die Transposition von 1 und 2 ist, d.h. [mm] $$\tau_{12}(n)=\begin{cases}2&n=1\\1&n=2\\n&\text{sonst}\end{cases}$$ [/mm] Nun zeige dass [mm]f[/mm] bijektiv ist.

Gruß, Robert

Bezug
                
Bezug
Ordnung der alternierenden Gr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Do 28.01.2010
Autor: Doemmi

Vielen Dank für deine Antwort!

Ich schnall es in keinster Weise. Ich verstehe nicht, was das für eine Abbildung ist, die du mir gegeben hast. Also es sagt mir wirklich rein garnichts :-( Die ganze Thematik ist mir irgendwie ein völliges Rätsel, obwohl es ja nicht so schwer zu sein scheint.

Ich soll eine gerade Permutation auf eine ungerade abbilden. Wenn das bijektiv ist, ist ja völlig logisch, dass die Mächtigkeit beider Mengen gleich ist, aber wie gesagt, ich verstehe die Abbildung selbst nicht und dann schon garnicht, wie ich beweise, dass diese bijektiv ist.

Wäre dankbar für weitere Tipps.

Bezug
                        
Bezug
Ordnung der alternierenden Gr: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Do 28.01.2010
Autor: pelzig

Dass [mm] $S_n$ [/mm] zusammen mit der Verkettung von Abbildungen [mm] $\circ$ [/mm] eine Gruppe ist weißt du. Das [mm] $\tau_{12}$ [/mm] was ich dir defiiert habe ist ein Element in [mm] $S_n$, [/mm] um genau zu sein eine ungerade Permutation. Diese Abbildung die du jetzt betrachten sollst ist [mm] $$f:A_n\ni \varphi\mapsto \varphi\circ\tau_{12}\in S_n [/mm] - [mm] A_n$$ [/mm] d.h. die Abbildung schickt eine (gerade) Permutation auf sich selbst verkettet mit [mm] $\tau_{12}$. [/mm] Jetzt musst du zeigen:

1) f ist wohldefiniert, d.h. wenn [mm] $\varphi$ [/mm] gerade ist (d.h. [mm] $\varphi\in A_n), [/mm] dann ist [mm] $\varphi\circ\tau_{12}$ [/mm] ungerade (d.h. [mm] $\varphi\circ\tau_{12}\in S_n [/mm] - [mm] A_n$) [/mm]
2) f ist injektiv und surjektiv.

Gruß, Robert

Bezug
        
Bezug
Ordnung der alternierenden Gr: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Do 28.01.2010
Autor: pelzig

Übrigens: ein wesentlich eleganterer Weg ist folgender, dazu muss man aber schon ein paar Sachen mehr wissen:

Die Abbildung [mm] $\alpha:S_n\ni\varphi\mapsto\operatorname{sgn}(\varphi)\in\IZ^\*$ [/mm] ist für [mm] $n\ge [/mm] 2$ ein Epimorphismus, wobei [mm] $\IZ^\*=\{-1,1\}$ [/mm] die Einheitengruppe der ganzen Zahlen ist. Insbesondere ist [mm] $\ker\alpha=A_n$ [/mm] ein Normalteiler in [mm] $S_n$ [/mm] und nach einem Isomorphiesatz ist [mm] $S_n/A_n\cong\IZ^\*$, [/mm] insbesondere ist also nach dem Satz von Lagrange [mm] $|S_n|=|\IZ^\*|\cdot|A_n|=2\cdot|A_n|$. [/mm]

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]