www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenNullstellen Parabelschar
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Nullstellen Parabelschar
Nullstellen Parabelschar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen Parabelschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Fr 02.06.2006
Autor: Fschmidt

Aufgabe
ft(x)= [mm] 3-t*ln(x^2+t) [/mm]

Für welche ganzzahligen WErte von t besitzt ft(x) Schnittpunkte mit der x-Achse?

Hallo,
für die oben geanannte Teilaufgabe eins stelle ich mir den Lösungsansatz so vor.
Ich setzte die Funktion = 0 um einen Schnittpunkt zu erhalten:

0 = [mm] 3-t*ln(x^2+t) [/mm]

Von Denkansatz hätte ich jetzt gerne die Funktion nach x umgestellt. Da bekomme ich:

x=  [mm] \pm \wurzel{e^{ \bruch{3}{t}}-t} [/mm]

Eine Lösung gibt es nun nur wenn der Ausdruck unter der Wurzel > 0 ist.
Jedoch kann ich das nicht exakt lösen, da ich t nicht isolieren kann:

[mm] e^{ \bruch{3}{t}}-t [/mm] = 0

Hier komme ich nicht weiter.
Ist mein Denkansatz bereits falsch oder habe ich einen Rechenfehler.
Ich bin um jede Hilfe dankbar.
Viele Grüße,
Florian

        
Bezug
Nullstellen Parabelschar: nur numerisch
Status: (Antwort) fertig Status 
Datum: 18:21 Fr 02.06.2006
Autor: Disap


> ft(x)= [mm]3-t*ln(x^2+t)[/mm]
>  
> Für welche ganzzahligen WErte von t besitzt ft(x)
> Schnittpunkte mit der x-Achse?
>  Hallo,

Servus.

>  für die oben geanannte Teilaufgabe eins stelle ich mir den
> Lösungsansatz so vor.
>  Ich setzte die Funktion = 0 um einen Schnittpunkt zu
> erhalten:

[ok]

> 0 = [mm]3-t*ln(x^2+t)[/mm]

[ok]

> Von Denkansatz hätte ich jetzt gerne die Funktion nach x
> umgestellt. Da bekomme ich:
>  
> x=  [mm]\pm \wurzel{e^{ \bruch{3}{t}}-t}[/mm]

[daumenhoch]

> Eine Lösung gibt es nun nur wenn der Ausdruck unter der
> Wurzel > 0 ist.

[ok]

>  Jedoch kann ich das nicht exakt lösen, da ich t nicht
> isolieren kann:
>  
> [mm]e^{ \bruch{3}{t}}-t[/mm] = 0

Eigentlich heißt es ja:

[mm] $e^{ \bruch{3}{t}}-t [/mm] > 0$

> Hier komme ich nicht weiter.

Diese Ungleichung musst du numerisch lösen. Z. B. mit dem Newtonverfahren.
Es gibt zwei Nullstellen, grob abgelesen lauten diese

[mm] t_1 \approx -5.17*10^{-25} [/mm]
[mm] t_2 \approx [/mm]  2.85

Die Ergebnisse dürfen nun also [mm] t<-5.17*10^{-25} [/mm] sein und müssen ebenfalls kleiner als 2.85 sein.
Somit ergeben sich die Lösungen für alle ganzzahligen t < 0 (also -1,-2,-3 usw) und t=+2 sowie t=+1

t=0 kann nicht enthalten sein, weil wenn du t=0 mal in die Funktionsgleichung einsetzt, erkennst du, dass die Funktion y=3 lautet. Das macht wenig Sinn. Keine Nullstelle

> Ist mein Denkansatz bereits falsch oder habe ich einen
> Rechenfehler.

Nö, der stimmt.

> Ich bin um jede Hilfe dankbar.
>  Viele Grüße,
>  Florian

Liebe Grüße
Disap

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]