www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenMehrdimensionales Taylorpolyn.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Mehrdimensionales Taylorpolyn.
Mehrdimensionales Taylorpolyn. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrdimensionales Taylorpolyn.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:31 So 13.05.2012
Autor: racy90

Hallo,

Ich hab folgende Funktion gegeben [mm] f(x,y)=y^2+xy+x-y+17 [/mm] und soll nun das Taylorpolynom im Punkt P (1,2) berechnen.Daraus soll ich mir die Gleichung für die Tangentialebene im Punkt P herauslesen und den Normalvektor der Ebene angeben.

Das Taylorpolynom sollte sein [mm] T_2= 22+3(x-1)+4(x-2)+1(2(x-1)(y-2))+2(y-2)^2 [/mm]

Aber wie bekomme ich nun die Tangentialebene bzw dessen Normalvektor??

        
Bezug
Mehrdimensionales Taylorpolyn.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 So 13.05.2012
Autor: Richie1401

Die Tangentialebene berechnest du ganz einfach mit f(x,y). Die Formel sollte dir bekannt sein.

Tangentialebene
[mm] z-z_0=\bruch{\partial f(x_0,y_0)}{\partial x}(x-x_0)+\bruch{\partial f(x_0,y_0)}{\partial y}(y-y_0) [/mm]

Daraus ergibt sich dann ja auch der Normalenvektor.

Bezug
                
Bezug
Mehrdimensionales Taylorpolyn.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:51 So 13.05.2012
Autor: racy90

für diesen Audruck [mm] z-z_0=\bruch{\partial f(x_0,y_0)}{\partial x}(x-x_0)+\bruch{\partial f(x_0,y_0)}{\partial y}(y-y_0) [/mm] würde ich auf 1(x-1)+3(y-2) kommen?

Bezug
                        
Bezug
Mehrdimensionales Taylorpolyn.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 So 13.05.2012
Autor: Richie1401

Ich fürchte nein.

Bilde die partiellen Ableitungen, setze den Punkt (1,2) ein und berechne auch noch [mm] z_0. [/mm]



Bezug
                                
Bezug
Mehrdimensionales Taylorpolyn.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 So 13.05.2012
Autor: racy90

fx(x,y)=y+1  fy(x,y)=2y+x-1  [mm] df=\bruch{y+1+2y+x-1}{dx}(x-1)+\bruch{y+1+2y+x-1}{dy}(y-2) [/mm] =1(x-1)+3(y-2)


Das müsste doch nach deiner Formel stimmen

Aber es steht auch das man es auch aus der Taylorformel herauslesen kann,dann bräuchte ich ja die zusätzliche berechnung nicht oder?

Bezug
                                        
Bezug
Mehrdimensionales Taylorpolyn.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 So 13.05.2012
Autor: Richie1401


> [mm] f_x(x,y)=y+1 [/mm] ;  [mm] f_y(x,y)=2y+x-1 [/mm]  
> [mm]df=\bruch{y+1+2y+x-1}{dx}(x-1)+\bruch{y+1+2y+x-1}{dy}(y-2)[/mm]
> =1(x-1)+3(y-2)

=> [mm] f_x(1,2)=3 [/mm] ; [mm] f_y(1,2)=4 [/mm] ; [mm] z_0=f(1,2)=22 [/mm]

Eingesetzt in
$ [mm] z-z_0=\bruch{\partial f(x_0,y_0)}{\partial x}(x-x_0)+\bruch{\partial f(x_0,y_0)}{\partial y}(y-y_0) [/mm] $ liefert

$ z-22=3(x-1)+4(y-2) $

>  
>
> Das müsste doch nach deiner Formel stimmen
>  
> Aber es steht auch das man es auch aus der Taylorformel
> herauslesen kann,dann bräuchte ich ja die zusätzliche
> berechnung nicht oder?

Kommt dir obiges bekannt vor?

Normalenvektor: du kannst alles ausrechnen, und dann hast du eine ganz normale Ebenengleichung.
Also: $ -22+3+8=3x+4y-z $
Normalenvektor ist demnach was?

Bezug
                                                
Bezug
Mehrdimensionales Taylorpolyn.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 So 13.05.2012
Autor: racy90

Normalvektor müsste sein : (3,4,-1) oder?

Bezug
                                                        
Bezug
Mehrdimensionales Taylorpolyn.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 So 13.05.2012
Autor: Richie1401

Absolut!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]