www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenMajorantenkriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Majorantenkriterium
Majorantenkriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Majorantenkriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:28 Di 25.10.2011
Autor: Igor1

Sei [mm] \summe_{n=0}^{\infty }c_{n} [/mm] eine konvergente Reihe reeller Zahlen.

[mm] s_{n}:=\summe_{k=n+1}^{\infty}c_{k} [/mm] für [mm] n\ge-1. [/mm]
Es gilt [mm] s_{n}-s_{n-1}=-c_{n} [/mm] für alle n [mm] \in \IN, [/mm] und [mm] \limes_{n\rightarrow\infty}s_{n}=0. [/mm]
Mir ist folgendes nicht klar :
Da die Folge der [mm] s_{n} [/mm] beschränkt ist, konvergiert nach dem Majoranten-Kriterium die Reihe [mm] \summe_{n=0}^{\infty}s_{n}x^{n} [/mm] für |x|<1.


Was kommt als Majorante in Frage? Ich sehe nicht so viele Möglichkeiten, deshalb denke ich, dass [mm] \summe_{n=0}^{\infty}s_{n} [/mm] eine Majorante ist.
Wenn ja, dann muss [mm] s_{n} [/mm] nichtnegativ für fast alle n [mm] \in \IN [/mm] sein.Ist es so?


Gruss
Igor



        
Bezug
Majorantenkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 22:46 Di 25.10.2011
Autor: leduart

Hallo
dass [mm] s_n [/mm] beschränkt ist also für alle n [mm] s_n aber du kannst die summe abschätzen durch [mm]\summe_{n=1}^{\infty} s_nx^n \le \summe_{n=1}^{\infty} S*x^n =S*\summe_{n=1}^{\infty} x^n [/mm] und hast S*die geom. Reihe als Majorante. (die ist die meist verwendete Majorante!)
gruss leduart


Bezug
        
Bezug
Majorantenkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 08:29 Mi 26.10.2011
Autor: fred97

Leduarts Antwort gefällt mir nicht, denn beim Majorantenkriterium braucht man immer (!) Beträge.

Dass [mm] (s_n) [/mm] beschränkt ist bedeutet: es gibt ein c [mm] \ge [/mm] 0 mit: [mm] |s_n| \le [/mm] c für jedes n.

Damit ist

            [mm] |s_nx^n| \le c|x|^n [/mm] für jedes n.

Da für |x|<1 die Reihe [mm] \sum c|x|^n [/mm] konvergiert, folgt mit dem Maj.-Krit.:

          [mm] \sum s_nx^n [/mm]  konv. für |x|<1 absolut.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]