www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLösungsvektoren aus Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - Lösungsvektoren aus Matrix
Lösungsvektoren aus Matrix < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsvektoren aus Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 Do 29.01.2009
Autor: Weisswurst

Aufgabe
Geben Sie die Lösungsvektoren x⁰, v¹, v2 in der Form x⁰+v¹*t+v²*s an.

[mm] \pmat{ 1 & -20 & 0 & -3 & 2 \\ 0 & 0 & 1 & -15 & 13 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 } [/mm]

Der Rang der Matrix ist 2, die lin. unabhängigen Vektoren sind j1 = 1 und j2 = 3. x⁰ ist [mm] \vektor{2 \\ 0 \\ 13 \\ 0}. [/mm] So viel hab ich noch selbst rausbekommen.

Die vollständige  Lösung liegt mir auch vor.
v¹ = [mm] \vektor{-20 \\ -1 \\ 0 \\ 0} [/mm]
v² = [mm] \vektor{-3 \\ 0 \\ -15 \\ -1} [/mm]

Angeblich kann man die Lösung einfach so ablesen. Sicher seh ich die Zahlen, weiss aber nicht wo her sie kommen.

Grüße
Wurst

        
Bezug
Lösungsvektoren aus Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 07:52 Fr 30.01.2009
Autor: angela.h.b.


> Geben Sie die Lösungsvektoren x⁰, v¹, v2 in der Form
> x⁰+v¹*t+v²*s an.
>  
> [mm]\pmat{ 1 & -20 & 0 & -3 & 2 \\ 0 & 0 & 1 & -15 & 13 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 }[/mm]

Hallo,

wenn ich hier mal meine hellseherischen Kräfte bemühe, geht es also um die Lösungs eines inhomogenen linearen Gleichungssystems, dessen erweiterte Koeffizientenmatrix auf Zeilenstufenform gebracht wurde.

Ich zeige Dir jetzt, wie Du die Lösungen ablesen kannst: Du schiebst Zeilen mit einer -1 und Nulle  so ein, daß Du eine obere Dreiecksmatrix erhältst:

[mm] \pmat{ 1 & -20 & 0 & -3 & | 2 \\ \red{0}&\red{-1} & \red{0} & \red{0} & |\red{0} \\ 0 & 0 & 1 & -15 & | 13 \\ \red{0}&\red{0} & \red{0} & \red{-1} & |\red{0} } [/mm]

Die spezielle Lösung [mm] x_0 [/mm] ist der Vektor rechts, also [mm] v_0= \vektor{2 \\ 0 \\ 13 \\ 0}. [/mm]

Eine Basis des Lösungsraumes des inhomogenen Systems bilden die Spalten mit  -1 auf der Diagonalen, also

[mm] v_1:=\vektor{-20 \\ -1 \\ 0 \\ 0} [/mm]   und [mm] v_2:=\vektor{0 \\ 0 \\ -15\\ -1}. [/mm]

Also haben die Lösungen des Systems die Gestalt

[mm] \vektor{x_1\\x_2\\x_3\\x_4}=\vektor{2 \\ 0 \\ 13 \\ 0} [/mm] + [mm] r\vektor{-20 \\ -1 \\ 0 \\ 0} [/mm] + [mm] s\vektor{0 \\ 0 \\ -15\\ -1}. [/mm]

Gruß v. Angela

P.S.: Erstaunlich übrigens, daß Ihr das schon in der 5.Klasse macht. Normalerweise kommt das doch erst in der 7., oder?


>  
> Der Rang der Matrix ist 2, die lin. unabhängigen Vektoren
> sind j1 = 1 und j2 = 3. x⁰ ist [mm]\vektor{2 \\ 0 \\ 13 \\ 0}.[/mm]
> So viel hab ich noch selbst rausbekommen.
>  
> Die vollständige  Lösung liegt mir auch vor.
>  v¹ = [mm]\vektor{-20 \\ -1 \\ 0 \\ 0}[/mm]
>  v² = [mm]\vektor{-3 \\ 0 \\ -15 \\ -1}[/mm]
>  
> Angeblich kann man die Lösung einfach so ablesen. Sicher
> seh ich die Zahlen, weiss aber nicht wo her sie kommen.
>  
> Grüße
>  Wurst


Bezug
                
Bezug
Lösungsvektoren aus Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:41 Fr 30.01.2009
Autor: Weisswurst

Hallo angela!

Danke für deinen Beitrag.
Ich habe leider gerade Lerngruppe für eine andere Klausur, daher kann ich mir das jetzt nicht genau anschauen. Sieht aber plausibel aus.

Zu meinem Hintergrund, selbstverständlich machen wir das nicht in der 5. Klasse.
Ich hatte die Angabe erst auf 1. Klasse Grundschule stehen und habe dann erfahren, dass die Mitglieder mehr Wert auf diese Einstellung legen als ich erwartet habe. Daher habe ich es auf 5. Klasse gestellt, weil ich der Meinung bin, dass ich bis da hin in der Mathematik noch sicher unterwegs bin. Ich hoffe du hättest mir auch derartig geholfen, wenn dort Grundstudium gestanden hätte.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]