www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLösung eines DGL-Systems
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Lösung eines DGL-Systems
Lösung eines DGL-Systems < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung eines DGL-Systems: Aufgabe einer Uni Hausübung
Status: (Frage) überfällig Status 
Datum: 18:23 Mi 09.05.2007
Autor: Gunni

Aufgabe
Meine Frage hat letzten Endes sehr wenig mit Physik zu tun und ist somit auch für jemanden lösbar, der sich mit der Mechanik von rotierenden Bezugssystemen nie auseinander gesetzt hat.

Das Potential  [mm] V= \bruch {k} {2} (-x^2 + y^2) [/mm] rotiere mit der konstanten Winkelgeschwindigkeit [mm] \omega [/mm] um die z-Achse des Koordinatensystems (siehe Skizze) ( Zusatz: kart. 3-dim. [mm] \omega [/mm] in Richtung [mm] \vec e_z = \vec e*_z [/mm]
a) Stellen Sie die Bewegungsgleichung für ein Teilchen mit der Masse m in diesem Potential auf.
b) Finden Sie eine  allgemeine Lösung der Bewegungsgleichungen!
c) Welche Bedingung muss [mm] \omega [/mm] erfüllen,damit alle Bewegungen gebunden sind?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo liebe Matheraummitglieder,

bevor ich meine bisherige Lösung und mein Problem beschreibe, werde ich erst etwas zu meinem mathematischen Background sagen und die Umstände der Aufgabe näher erläutern, da das eventuell für die Erklärung der Lösung eine Rolle spielen könnte.

Ich bin Physikstudent im 2. Semester und habe mit Dgl- systemen bisher so gut wie keine Erfahrungen. Die Aufgabe entstammt der theoretischen Physik.


Der Ansatz die beiden Dgl zu über eine Funktion u= x+ iy zu koppeln funktioniert nicht. Jedoch kenne ich keinen anderen Ansatz um eine genaue Lösung zu erhalten. Einige bekamen den Tipp [mm] x = A * \cdot\ * e^{\lambda*t}[/mm]  und [mm]y= B *\cdot\ * e^{\lambda t} [/mm] anzusetzen, aber bisher hat das bei niemand zu einer geeigneten Lösung geführt...

Ich habe beim Suchen mitbekommen, dass gerne Matrizen angesetzt werden. Jedoch kann ich mit dem Lösungsverfahren so nichts anfangen und bräuchte eine nähere Erläuterung.

a)Nun wirklich zu der Aufgabe:
Bew. Gl: [mm] m \vec r'' = - \nabla V - 2m \vec \omega \times \vec r' - m \vec \omega \times ( \vec \omega \times \vec r ) [/mm]
-> [mm] m \vec r'' = \begin{pmatrix} kx\\ -ky\\ 0 \end{pmatrix}- 2m \omega \begin{pmatrix} -y' \\ x'\\ 0 \end{pmatrix} - m \omega^2 \begin {pmatrix} -x\\-y\\0 \end{pmatrix} [/mm]
--> z''*=0.
---> Dgl- sys : [mm] x''* = (\bruch {k} {m} + \omega^2) x + 2 \omega y') y''= (- \bruch {k} {m} + \omega^2) y* - 2 \omega x'*[/mm]

Die Lösung der Dgl habe ich trotz mehreren Stunden des Versuchens nicht herausbekommen, aber selbstverständlich werde ich es weiter versuchen.

zu c) wäre nett, wenn mir jemand erklären würde, was überhaupt mit gebunden gemeint ist, aber ich denke, dass ich das herausbekomme, wenn ich die b) habe.

Ich habe jetzt einen Zeitraum angegeben, ab dem die Frage nicht mehr dringend ist, das heißt aber nicht, dass mich die Antwort nicht mehr interessiert.

Edit: Ich habe die Multiplikation Zeichen entfernt, falls sie verwirrt haben sollten. Es stand dafür, dass die Koordinaten nicht im Labor(Inertial-)system sind.

Vielen Dank für eure Hilfe im Vorraus.

        
Bezug
Lösung eines DGL-Systems: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:07 Do 10.05.2007
Autor: Gunni

Aus der Revision ist irgendwie ein Doppelpost geworden. Ich finde leider die Funktion zum löschen nicht und bitte deshalb entweder um Hilfe mit Wort oder Tat.
Bezug
        
Bezug
Lösung eines DGL-Systems: Ansatz mit Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:10 Do 10.05.2007
Autor: Gunni

Wie oben schon erwähnt wurde ein Tipp gegeben, durch den ich mich jetzt nochmals durchgekämpft habe. Diesmal sieht das Ergebnis durchaus sinnvoll aus :
[mm] \lambda_1 = \wurzel{- \omega^2 + \bruch{k}{m}}[/mm]

[mm]\lambda_2= -\wurzel{-\omega^2 + \bruch{k}{m}}[/mm]

[mm]\lambda_3= \wurzel{-\omega^2 - \bruch{k}{m}}[/mm]

[mm]\lambda_4= -\wurzel{-\omega^2 - \bruch {k}{m}} [/mm]

Die Koeffizienten A und B können nur in Abhängigkeit voneinander bestimmt werden, aber die Gleichungen stimmen in jedem Fall überein. Ich gehe davon aus, dass die Bestimmung der vier Koeffizienten durch Randbedingungen geschehen muss.Wäre nett, wenn jemand dazu eine Meinung abgeben würde.

Bezug
        
Bezug
Lösung eines DGL-Systems: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Fr 11.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]