www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieLimes Superior (Mengenfolgen)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maßtheorie" - Limes Superior (Mengenfolgen)
Limes Superior (Mengenfolgen) < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes Superior (Mengenfolgen): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 So 07.08.2022
Autor: Andrejtrikolor

Guten Abend an alle! Ich versuche den Limes Superior und Limes Inferior von Mengenfolgen besser zu verstehen und insgesamt einen Überblick über Ungleichungen und mögliche Fragestellungen dazu zu haben.


Wir haben in der Vorlesung folgende Definitionen gehabt:

Sei [mm] $(A_{n})_{n \in \mathbb{N}} \in \mathcal{P}(\Omega)^{\mathbb{N}}$ [/mm] eine Mengenfolge.

[mm] $\inf\limits_{k \ge n} A_{k} [/mm] := Inf( [mm] \{ A_{n}, A_{n + 1} \} [/mm] ) = [mm] \bigcap\limits_{k = n}^{\infty} A_{k} [/mm] = [mm] \{ \omega \in \Omega\; \vert \; \omega \in A_{j}\quad \forall\; j \ge n \}$ [/mm] und [mm] $\sup\limits_{k \ge n} A_{k} [/mm] := Sup( [mm] \{ A_{n}, A_{n + 1} \} [/mm] ) = [mm] \bigcup\limits_{k = n}^{\infty} A_{k} [/mm] = [mm] \{ \omega \in \Omega\; \vert \; \exists\; j \ge n: \omega \in A_{j} \}$ [/mm]

[mm] $\liminf\limits_{n \to \infty} A_{n} [/mm] := [mm] \sup\limits_{n \in \mathbb{N}} \inf\limits_{k \ge n} A_{k} [/mm] = [mm] \bigcup\limits_{n = 1}^{\infty} \inf\limits_{k \ge n} A_{k} [/mm] = [mm] \bigcup\limits_{n = 1}^{\infty} \bigcap\limits_{k = n}^{\infty} A_{k}$ [/mm] und [mm] $\limsup\limits_{n \to \infty} A_{n} [/mm] := [mm] \inf\limits_{n \in \mathbb{N}} \sup\limits_{k \ge n} A_{k} [/mm] = [mm] \bigcap\limits_{n = 1}^{\infty} \bigcup\limits_{k = n}^{\infty} A_{k}$ [/mm]


Nun gibt es für den Limes Superior und den Limes Inferior eine Interpretation.
Ich habe versucht, die Mengen umzuschreiben:


Es ist [mm] $\liminf\limits_{n \to \infty} A_{n} [/mm] = [mm] \{ \omega \in \Omega\; \vert \; \exists\; j \in \mathbb{N} : \omega \in \inf\limits_{k \ge j} \} [/mm] = [mm] \{ \omega \in \Omega\; \vert \; \exists\; j \in \mathbb{N} : \omega \in A_{n}\quad \forall\; n \ge j \} [/mm] = [mm] \{ \omega \in \Omega\; \vert \; \omega\; \text{ist in fast allen}\; A_{n}\; \text{enthalten} \}$ [/mm]


Es ist [mm] $\limsup\limits_{n \to \infty} A_{n} [/mm] = [mm] \{ \omega \in \Omega\; \vert \; \omega \in \sup\limits_{k \ge n} A_{k}\quad \forall\; n \in \mathbb{N} \} [/mm] = [mm] \{ \omega \in \Omega\; \vert \; \exists\; l \ge n: \omega \in A_{l}\quad \forall\; n \in \mathbb{N} \} [/mm] =  [mm] \{ \omega \in \Omega\; \vert \; \omega\; \text{ist in unendlich vielen}\; A_{n}\; \text{enthalten} \}$ [/mm]


Ist das so mathematisch korrekt aufgeschrieben?



Zudem habe ich zum Limes Superior und Limes Inferior ein paar Ungleichungen recherchiert, um mich mit den beiden Begriffen warm zu werden. Ich habe bis jetzt folgende gefunden:



(1) [mm] $\emptyset \subseteq \liminf\limits_{n \to \infty} A_{n} \subseteq \limsup\limits_{n \to \infty} A_{n} \subseteq \Omega$ [/mm]

(2) [mm] $(\liminf\limits_{n \to \infty} A_{n})^{c} [/mm] = [mm] \limsup\limits_{n \to \infty} A_{n}^{c}$ [/mm]

(3) [mm] $\limsup\limits_{n \to \infty} A_{n} [/mm] = [mm] \left \{ \omega \in \Omega\; \vert \; \sum\limits_{n \in \mathbb{N}} I_{A_{n}}(\omega) = \infty \right \}$ [/mm] und  [mm] $\liminf\limits_{n \to \infty} A_{n} [/mm] = [mm] \left \{ \omega \in \Omega\; \vert \; \sum\limits_{n \in \mathbb{N}} I_{A_{n}^{c}}(\omega) < \infty \right \}$ [/mm]

(4) [mm] $\mu(\liminf\limits_{n \to \infty} A_{n}) \le \liminf\limits_{n \to \infty} \mu(A_{n})$ [/mm]  und [mm] $\mu(\limsup\limits_{n \to \infty} A_{n}) \ge \limsup\limits_{n \to \infty} \mu(A_{n})$ [/mm]

Für (1) - (3) habe ich einen Lösungsansatz.

Bei der (4) tu ich mich aber ziemlich schwer.  Hätte jemand eine Idee, wie man ansetzen könnte?


Liebe Grüße,
Andrej




        
Bezug
Limes Superior (Mengenfolgen): Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Di 09.08.2022
Autor: Gonozal_IX

Hiho,

> Es ist [mm]\liminf\limits_{n \to \infty} A_{n} = \{ \omega \in \Omega\; \vert \; \exists\; j \in \mathbb{N} : \omega \in \inf\limits_{k \ge j} \} = \{ \omega \in \Omega\; \vert \; \exists\; j \in \mathbb{N} : \omega \in A_{n}\quad \forall\; n \ge j \} = \{ \omega \in \Omega\; \vert \; \omega\; \text{ist in fast allen}\; A_{n}\; \text{enthalten} \}[/mm]

Bis auf die Tatsache, dass du in der ersten Menge vergessen hast, die [mm] $A_k$ [/mm] zu notieren: Ja.
Zum Verständnis: Man kann auch sagen, dass im Limes inferior alle Elemente enthalten sind, die ab einem bestimmten [mm] $A_{n_0}$ [/mm] in allen folgenden [mm] $A_n$ [/mm] enthalten sind.
Das entspricht der Formulierung "in fast allen".


> Es ist [mm]\limsup\limits_{n \to \infty} A_{n} = \{ \omega \in \Omega\; \vert \; \omega \in \sup\limits_{k \ge n} A_{k}\quad \forall\; n \in \mathbb{N} \} = \{ \omega \in \Omega\; \vert \; \exists\; l \ge n: \omega \in A_{l}\quad \forall\; n \in \mathbb{N} \} = \{ \omega \in \Omega\; \vert \; \omega\; \text{ist in unendlich vielen}\; A_{n}\; \text{enthalten} \}[/mm]

Auch hier eine etwas flapisgere Formulierung zum Verständnis: Der Limes superior enthält alle Elemente, die immer mal wieder in einem [mm] $A_n$ [/mm] vorkommen, egal wie lang man "läuft". Das entspricht der "in unendlich vielen" Definition.

> Bei der (4) tu ich mich aber ziemlich schwer.  Hätte
> jemand eine Idee, wie man ansetzen könnte?

Zeige: [mm] $\liminf_{n\to\infty} A_n \subseteq A_n$. [/mm] Der Rest folgt aus der Monotonie des Maßes. Für [mm] $\limsup$ [/mm] analog.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]