www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungKreuzprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Kreuzprodukt
Kreuzprodukt < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreuzprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Sa 13.05.2006
Autor: JustinSane

Aufgabe
Zeige, dass das Kreuzprodukt zweier Vektoren  [mm] \vec{a} [/mm] und  [mm] \vec{b} [/mm] auch als Determinante dargestellt werden kann!

Hallo zusammen!
Ich habe ein Problem mit dem Kreuzprdukt bezüglich der Determinantenform. Die muss ich nämlich in meine Facharbeit einbringen und habe noch Verständnisprobleme.
Ich bin auf folgende Herleitung gekommen bzw. habe sie gefunden und mir zusammengereimt:
http://img182.imageshack.us/img182/46/unbenannt7lk.jpg

Allerdings stellen sich mir nun folgende Fragen:
1. Ich komme in meiner Rechnung von Vektoren auf eine Determinante, also auf eine (reelle) Zahl. Wie kann das sein bzw. was habe ich falsch gemacht und wie müsste ich es anders machen?
2. Müssen über [mm] \vec{e_{x}} [/mm] , [mm] \vec{e_{y}} [/mm] und [mm] \vec{e_{z}} [/mm] Vektorpfeile? Sind damit die Koordinaten gemeint?

Vielen Dank für die Hilfe!
Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Kreuzprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Sa 13.05.2006
Autor: DaMenge

Hallo,

mit [mm] $\vec{e_x}*(a_y *b_z [/mm] - [mm] a_z *b_y)$ [/mm] ist z.B. der Vektor gemeint, der in der x-Komponente (also der ersten) den Eintrag [mm] $(a_y *b_z [/mm] - [mm] a_z *b_y)$ [/mm] hat und sonst nur 0 - analog die in der zweiten Komponente..

beachte : [mm] $\vec{e_x}=\vektor{1\\0\\0}$ [/mm]

deshalb muss in der Determinante auch weiterhin die Vektorpfeile stehen - d.h. die [mm] a_i [/mm] und [mm] b_i [/mm] in der Matrix sind zwar Zahlen, aber die [mm] e_i [/mm] sind Vektoren, denn sonst kommt zum Schluß ja auch kein Vektor raus.

die allerletzte Zeile mit den [mm] c_i [/mm] ergibt für mich aber wenig Sinn..

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]