www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKonv.rad. komplex Potenzreihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Konv.rad. komplex Potenzreihe
Konv.rad. komplex Potenzreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konv.rad. komplex Potenzreihe: Korrektur,Tipp,Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:39 Fr 08.04.2022
Autor: nkln

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Bestimmen Sie die Konvergenzradien der folgenden Reihen:

$a) \summe_{n=0}^{\infty} (8^n n+3^n)z^n$ ,

$b) \summe_{n=0}^{\infty} c_n(z-z_0)^n$ und $(c_n)$,für $n \in \IN_0$, eine komplexe Folge ist, die betragsmäßig beschränkt ist durch $ 2 \le |c_n|\le 4$ für alle $n \in \IN_0$

$c) \summe_{n=0}^{\infty} a_kz^k$  mit $a_k=\begin{cases} 1, & \mbox{für } k\in 2\IN_0 \\ 2^k, & \mbox{für } k \in 1+2\IN_0 \end{cases}$


Hallo Zusammen,

ich würde gerne wissen, ob meine Lösungswege so richtig sind.

Lösungen:
ich möchte gerne den Konvergenzradien mit Satz von Cauchy-Hadamard bestimmen, also

$R= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|a_n|}$ mit $\frac{1}{0}=\infty$ und $\frac{1}{\infty}=0$

a) Die Folge $a_n$ ist ja hier $a_n=(8^n n + 3^n)$ mit Cauch.Hada folgt

$R= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|a_n|}$ $= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|(8^n n + 3^n)|} $
da $n\ge 0$ ist ,ist $a_n \ge 1$ und der Betrag kann wegfallen. Das heißt
$R=\frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{(8^n n + 3^n)}$.


Betrachtet man jetzt gesondert $\limes sup_{n\rightarrow\infty} \wurzel[n]{(8^n n + 3^n)$,stellt man fest, dass dieser Ausdruck gegen unendlich läuft. Das heißt, dass die Situation $ \frac{1}{\infty}$ entsteht und der Konvergenzradius folglich $R=0$ ist.

b) Es gilt hier 2\le |c_n|\le 4. Durch Cauch.Hada folgt  $R= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|a_n|}$ $= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|c_n|} $
Da der Betrag Betrag von |c_n| \ge 4 und man den Limes superior sucht erhält man:
$R= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|c_n|} $$= \frac{1}{4} $

Folglich ist $R= \frac{1}{4}$

$c) \summe_{n=0}^{\infty} a_kz^k$  mit $a_k=\begin{cases} 1, & \mbox{für } k\in 2\IN_0 \\ 2^k, & \mbox{für } k \in 1+2\IN_0 \end{cases}$

1.Fall $k$ ist gerade

Daraus folgt $a_k=1$

Das heißt $R= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|a_k|}}$ $= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|1|}}$ $= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{1}}= 1$

2.Fall $k$ ist ungerade
Daraus folgt $a_k=2^k$

Mit Cauch.Hada  $R= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|a_k|}}$$= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|2^k|}}$

Betragsstriche können wegegelassen werden, da $a_k \ge 2$

$R= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{2^k}}$$=\frac{1}{\limes sup_{n\rightarrow\infty} 2} = \frac{1}{ 2}.$

Also $R= \frac{1}{2}$


Kann man das alles so machen?


        
Bezug
Konv.rad. komplex Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Fr 08.04.2022
Autor: HJKweseleit


> Bestimmen Sie die Konvergenzradien der folgenden Reihen:
>  
> [mm]a) \summe_{n=0}^{\infty} (8^n n+3^n)z^n[/mm] ,
>  
> [mm]b) \summe_{n=0}^{\infty} c_n(z-z_0)^n[/mm] und [mm](c_n)[/mm],für [mm]n \in \IN_0[/mm],
> eine komplexe Folge ist, die betragsmäßig beschränkt ist
> durch [mm]2 \le |c_n|\le 4[/mm] für alle [mm]n \in \IN_0[/mm]
>  
> [mm]c) \summe_{n=0}^{\infty} a_kz^k[/mm]  mit [mm]a_k=\begin{cases} 1, & \mbox{für } k\in 2\IN_0 \\ 2^k, & \mbox{für } k \in 1+2\IN_0 \end{cases}[/mm]
>  
> Hallo Zusammen,
>  
> ich würde gerne wissen, ob meine Lösungswege so richtig
> sind.
>  
> Lösungen:
>  ich möchte gerne den Konvergenzradien mit Satz von
> Cauchy-Hadamard bestimmen, also
>  
> [mm]R= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|a_n|}[/mm]
> mit [mm]\frac{1}{0}=\infty[/mm] und [mm]\frac{1}{\infty}=0[/mm]
>  
> a) Die Folge [mm]a_n[/mm] ist ja hier [mm]a_n=(8^n n + 3^n)[/mm] mit
> Cauch.Hada folgt
>  
> [mm]R= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|a_n|}[/mm]
> [mm]= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|(8^n n + 3^n)|}[/mm]
>  
> da [mm]n\ge 0[/mm] ist ,ist [mm]a_n \ge 1[/mm] und der Betrag kann wegfallen.
> Das heißt
> [mm]R=\frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{(8^n n + 3^n)}[/mm].
>  
>
> Betrachtet man jetzt gesondert [mm]\limes sup_{n\rightarrow\infty} \wurzel[n]{(8^n n + 3^n)}[/mm],stellt
> man fest, dass dieser Ausdruck gegen unendlich läuft.

[notok]

Nein.

Es ist [mm] \wurzel[n]{(8^n n + 3^n)} \le \wurzel[n]{(8^n n + 8^n n)} [/mm] = [mm] \wurzel[n]{2n}\wurzel[n]{8^n} [/mm]  = [mm] 8*\wurzel[n]{2n}, [/mm] und [mm] \wurzel[n]{2n} [/mm] geht gegen 1 (s. Hinweis unten).

Somit ist R [mm] \ge [/mm] 1/8, den genauen Wert solltest du selber finden. Tipp: [mm] 3^n=8^n*(3/8)^n. [/mm]

>  
> b) Es gilt hier [mm]2\le |c_n|\le[/mm] 4. Durch Cauch.Hada folgt  [mm]R= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|a_n|}[/mm]
> [mm]= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|c_n|}[/mm]
>  
> Da der Betrag Betrag von [mm]|c_n| \ge[/mm] 4 und man den Limes
> superior sucht erhält man:
>  [mm]R= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|c_n|} [/mm][mm]= \frac{1}{4}[/mm]

[notok]  

Man weiß nur, dass [mm]2\le |c_n|\le[/mm] 4 gilt. Alle [mm] |c_n| [/mm] könnten 2 sein, alle [mm] |c_n| [/mm] könnten 4 sein. Die n-te Wurzel wird aber in jedem Fall 1 (s. Hinweis unten).

>  
> Folglich ist [mm]R= \frac{1}{4}[/mm]
>  
> [mm]c) \summe_{n=0}^{\infty} a_kz^k[/mm]  mit [mm]a_k=\begin{cases} 1, & \mbox{für } k\in 2\IN_0 \\ 2^k, & \mbox{für } k \in 1+2\IN_0 \end{cases}[/mm]
>  

Vermutlich ist gemeint > [mm]c) \summe_{\red{k}=0}^{\infty} a_kz^k[/mm]  mit [mm]a_k=\begin{cases} 1, & \mbox{für } k\in 2\IN_0 \\ 2^k, & \mbox{für } k \in 1+2\IN_0 \end{cases}[/mm],
sonst gibt das keinen Sinn.


> 1.Fall [mm]k[/mm] ist gerade
>  
> Daraus folgt [mm]a_k=1[/mm]
>  
> Das heißt [mm]R= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|a_k|}}[/mm]
> [mm]= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|1|}}[/mm]
> [mm]= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{1}}= 1[/mm]
>  
> 2.Fall [mm]k[/mm] ist ungerade
> Daraus folgt [mm]a_k=2^k[/mm]
>  
> Mit Cauch.Hada  [mm]R= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|a_k|}}[/mm][mm]= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{|2^k|}}[/mm]
>  
> Betragsstriche können wegegelassen werden, da [mm]a_k \ge 2[/mm] besser: da [mm] a_k \ge [/mm] 0
>  
> [mm]R= \frac{1}{\limes sup_{n\rightarrow\infty} \wurzel[n]{2^k}}[/mm][mm]=\frac{1}{\limes sup_{n\rightarrow\infty} 2} = \frac{1}{ 2}.[/mm]
>  
> Also [mm]R= \frac{1}{2}[/mm]  [ok]
>  
>
> Kann man das alles so machen?
>  




Hinweis:
[mm] \wurzel[n]{a}= a^{1/n} [/mm] , für n nach [mm] \infty [/mm] geht das nach [mm] a^{0}=1. [/mm]

[mm] \wurzel[n]{n}= n^{1/n} [/mm] = [mm] (e^{ln(n)})^{1/n}=e^{ln(n)/n}, [/mm] für n nach [mm] \infty [/mm] geht ln(n)/n ebenfalls nach 0 und damit der Term nach 1.

Bezug
                
Bezug
Konv.rad. komplex Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:24 So 10.04.2022
Autor: nkln

Vielen Vielen Dank für deine Hilfe! :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]