www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration durch Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Integration durch Substitution
Integration durch Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 Sa 17.05.2008
Autor: JulianTa

Aufgabe
[mm] \int_0^1 (1-x^2)^n [/mm] dx = [mm] I_{2n+1}, [/mm] wobei [mm] I_{2n+1} [/mm] = [mm] \frac{2n}{2n+1} [/mm] * [mm] \frac{2n-2}{2n-1} [/mm] * ... * [mm] \frac{2}{3} [/mm] * 1 ist.

Ich habe diese Frage in keinen Foren auf anderen Internetseiten gestellt.

Hallo!
Ich muss die obige Aufgabe bearbeiten. Ich nehme mal an, dass die mit Inegration durch Substitution zu lösen ist. Ich bekomm nur leider keinen Ansatz hin und bin in der Int. durch Sub. auch nicht so 100% fit.
Der Weg wäre doch:
Substitution x = ? finden.
dann x' = [mm] \frac{d?}{dx} [/mm] = ?' berechnen.
==> dx = [mm] \frac{d?}{?'}. [/mm]
Dann wird doch x und dx in meiner obigen Gleichung ersetzt und ich löse das ganze Ding mit eben der gefundenen Substitution.
Richtig soweit?
Aber wie finde ich dann eine geeignete Substitution??


        
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Sa 17.05.2008
Autor: MathePower

Hallo JulianTa,

> [mm]\int_0^1 (1-x^2)^n[/mm] dx = [mm]I_{2n+1},[/mm] wobei [mm]I_{2n+1}[/mm] =
> [mm]\frac{2n}{2n+1}[/mm] * [mm]\frac{2n-2}{2n-1}[/mm] * ... * [mm]\frac{2}{3}[/mm] * 1
> ist.
>  Ich habe diese Frage in keinen Foren auf anderen
> Internetseiten gestellt.
>  
> Hallo!
>  Ich muss die obige Aufgabe bearbeiten. Ich nehme mal an,
> dass die mit Inegration durch Substitution zu lösen ist.
> Ich bekomm nur leider keinen Ansatz hin und bin in der Int.
> durch Sub. auch nicht so 100% fit.
>  Der Weg wäre doch:
> Substitution x = ? finden.
>  dann x' = [mm]\frac{d?}{dx}[/mm] = ?' berechnen.
>  ==> dx = [mm]\frac{d?}{?'}.[/mm]

>  Dann wird doch x und dx in meiner obigen Gleichung ersetzt
> und ich löse das ganze Ding mit eben der gefundenen
> Substitution.
> Richtig soweit?

Ja.

>  Aber wie finde ich dann eine geeignete Substitution??
>  

Der Integrand sieht ja aus wie eine Kreisgleichung, wähle deshalb die Substitution [mm]x=\sin\left(t\right)[/mm].

Die Berechnung des dann entstehenden Integrals führt dann auf eine Rekursionsformel.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]