www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktionsschritt (beweis)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - Induktionsschritt (beweis)
Induktionsschritt (beweis) < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsschritt (beweis): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 So 30.10.2005
Autor: AriR

weiß einer von euch den Induktionsschritt (Beweis) für

n²  [mm] \ge 2^{n} [/mm] - 1 für alle n [mm] \ge [/mm] 4

ich bekomme den beweis einfach nicht hin für n -> n+1

in meiner letzen zeile steht: n² [mm] \le 2*(2^{n}-1)-2n [/mm]

wie kann ich jetzt beweisen, dass dies eine wahre aussage ist?

danke im voraus... gruß ari

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktionsschritt (beweis): Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 So 30.10.2005
Autor: angela.h.b.


> weiß einer von euch den Induktionsschritt (Beweis) für
>  
> n²  [mm]\ge 2^{n}[/mm] - 1 für alle n [mm]\ge[/mm] 4
>  
> ich bekomme den beweis einfach nicht hin für n -> n+1

Hallo,

schon für n=5 dürfte man Schwierigkeiten haben, das da oben zu zeigen.
Da die Aussage nicht stimmt, kannst Du sie nicht zeigen.

Stimmen tut allerdings folgendes:

n²  [mm] < 2^{n}[/mm] - 1 für alle n [mm] > [/mm] 4

Induktionsanfang: hier wäre Gültigkeit für n=5 zu zeigen.

Nun der Schritt von n [mm] \to [/mm] n+1:

Unter der Voraussetzung, daß die Behauptung für alle n>4 gilt, ist zu zeigen: es ist (n+1)²  [mm] < 2^{n+1}[/mm] - 1.

Jetzt beginnt das große Abschätzen

[mm] (n+1)^2=n^2+2n+1<2^n-1+2n+1=2^n+2n [/mm]    
-----Achtung! Jetzt kommt der Witz!!!----
[mm] <2^n+n^2<... [/mm]

Und nun kommst Du alleine weiter.

Oder war die Aufgabe eine andere???

Gruß v. Angela      



Bezug
                
Bezug
Induktionsschritt (beweis): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 So 30.10.2005
Autor: AriR

kurze frage noch bitte, bei dem schritt hier

[mm] n^2+2n+1<2^n-1+2n+1 [/mm]

wo kommt auf der rechten seite das +2n+1 her?? wir haben doch links nur die binomische formel angewendet oder nicht, dann müsste doch die rechte immer noch [mm] 2^n-1 [/mm] sein oder nicht?

Bezug
                        
Bezug
Induktionsschritt (beweis): Induktionsvoraussetzung
Status: (Antwort) fertig Status 
Datum: 20:17 So 30.10.2005
Autor: Loddar

Hallo AriR,

zunächst einmal [willkommenmr] !!


[mm] $(n+1)^2 [/mm] \ = \ [mm] \red{n^2}+2n+1 [/mm] \ > \ [mm] \red{2^n-1} [/mm] + 2n+1$


Hier wurde zunächst die binomische Formel auf die Klammer (wie von Dir erkannt) und anschließend auf den Term [mm] $\red{n^2}$ [/mm] die Induktionsvoraussetzung [mm] $n^2 [/mm] \ > \ [mm] 2^n-1$ [/mm] angewandt.

Daher verbleibt dann natürlich auch der "Rest" mit $+2n+1_$ .


Gruß
Loddar


Bezug
                
Bezug
Induktionsschritt (beweis): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 So 30.10.2005
Autor: AriR

ok das mit den +2n+1 hab ich verstanden, aber wie mache ich jetzt weiter +g+..

Bezug
                        
Bezug
Induktionsschritt (beweis): nochmals Indukt.-voraussetzung
Status: (Antwort) fertig Status 
Datum: 20:45 So 30.10.2005
Autor: Loddar

Hallo AriR!


Angela hat es Dir doch bis zu $... \ < \ [mm] 2^n [/mm] + [mm] n^2$ [/mm] bereits vorgerechnet.

Wende nun auf [mm] $n^2$ [/mm] nochmals die Induktionsvoraussetzung an.


Gruß
Loddar


Bezug
                
Bezug
Induktionsschritt (beweis): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 So 30.10.2005
Autor: AriR

entweder hab ich einen black out oder bin zu doof für diese aufgabe +g+

[mm] 2^{n}+2n [/mm] < $ [mm] <2^n+n^2<... [/mm] $ ??

Bezug
                        
Bezug
Induktionsschritt (beweis): Abschätzung
Status: (Antwort) fertig Status 
Datum: 21:39 So 30.10.2005
Autor: Loddar

Hallo AriR!


In diesem Schritt wurde schlicht und ergreifend $2n_$ gegen [mm] $n^2$ [/mm] abgeschätzt. Und dass gilt $2n \ < \ [mm] n^2$ [/mm] , ist ja offensichtlich wahr für $n \ > \ 2$ .


Gruß
Loddar


Bezug
                                
Bezug
Induktionsschritt (beweis): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 So 30.10.2005
Autor: AriR

müsste man dies dann nicht auch wieder beweisen, rein streng genommen, da wir es ja in einem beweis verwenden?

Bezug
                                        
Bezug
Induktionsschritt (beweis): Streng genommen ...
Status: (Antwort) fertig Status 
Datum: 22:04 So 30.10.2005
Autor: Loddar

Hallo Ari!

Ganz streng genommen, müsste man diese Abschätzung wirklich ebenfalls nachweisen.

[mm] $n^2 [/mm] \ > \ 2n$   [mm] $\gdw$ $n^2 [/mm] - 2n \ = \ n*(n-2) \ > \ 0$

Daraus ist das schon fast "abzulesen", da $n \ [mm] \in [/mm] \ [mm] \IN$ [/mm] ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]