www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenGraphzeichnung von ganzr. Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ganzrationale Funktionen" - Graphzeichnung von ganzr. Fkt.
Graphzeichnung von ganzr. Fkt. < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graphzeichnung von ganzr. Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 So 02.12.2007
Autor: Jana-WG

Aufgabe
Erstellen Sie eine möglichst genaue Skizze des Graphen der ganzrationalen Funktion f(x) = [mm] x^4-3x³-3x²+7x+6. [/mm]
Hierzu solten Sie den y-Achsenabschnitt berechnen, die Faktorzerlegung bestimmen (Hinweis: x0=-1 ist eine doppelte Nullstelle von f) und den Grenzwert lim f(x) berechnen.

Hallo erstmal!!

Bei der Aufgabe bin ich soweit gekommen, dass ich den y-Achsenabschnitt bestimmt habe (0/6). (ist ja eigntlich auch nicht schwer)

...so nun muss ich ja die Faktorzerlegung bestimmen, und da ist mein Problem. Bin mir nämlich nicht sicher was Faktorzerlegung genau ist. Ich hätte jetzt gesagt es wäre einfach nur Ausklammern. Also würde ich dann die [mm] x^4 [/mm] ausklammern.
--> [mm] x^4(-3/x³ [/mm] - 3/x² + 7/x + [mm] 6/x^4) [/mm]  ..wobei ich mir hier auch nicht sicher bin ob ich richtig ausgeklammert habe!

die Grenzwerte für [mm] x^4 [/mm] bekomme ich dann auch noch hin.. aber ich habe keinen blassen Schimmer wie ich dass dann in ein Koordinatensystem einzeichne...

Kann mir vielleicht jemand helfen? Danke..

.......

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Graphzeichnung von ganzr. Fkt.: Tipps
Status: (Antwort) fertig Status 
Datum: 13:02 So 02.12.2007
Autor: Infinit

Hallo Jana,
ein Polynom n-ten Grades (bei Dir hier ist n =4) besitzt n Nullstellen. Eine doppelte Nullstelle wurde bereits angegeben. Die beiden restlichen Nullstellen bekommst Du durch Polynomdivision oder aber durch einen Koeffizientenvergleich.
Du weisst ja, dass gelten muss:
$$ [mm] (x+1)^2 \cdot (Ax^2 [/mm] + Bx +C) =  [mm] x^4-3x³-3x²+7x+6 \, [/mm] . $$
Ausmultiplizieren und vergleichen liefert Dir die Koeffizienten für die quadratische Gleichung, die Du dann mit Hilfe der p,q-Formel lösen kannst.
Viel Spaß dabei wünscht
Infinit

Bezug
                
Bezug
Graphzeichnung von ganzr. Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:24 So 02.12.2007
Autor: Jana-WG

Hallo, danke für die Antwort!

Ich habe die Polynomdivision durchgeführt also [mm] (x^4-3x³-3x²+7x+6):(x+1) [/mm] dies ergibt dann x³-4x²+x+6. Jetzt kann ich ja aber mit der lösung nicht die Nullstellen durch pqFormel oder abcFormel bestimmen da es immer noch kubisch ist. Muss ich dann nochmal Polynomdivision machen da es eine doppelte Nullstelle ist? also (x³-4x²+x+6):(x+1) ?

Gruß Jana

Bezug
                        
Bezug
Graphzeichnung von ganzr. Fkt.: nochmal
Status: (Antwort) fertig Status 
Datum: 14:29 So 02.12.2007
Autor: Loddar

Hallo Jana!


Du hast Recht: da es sich bei [mm] $x_1 [/mm] \ = \ -1$ um eine doppelte Nullstelle handelt, "darfst" Du noch einmal die MBPolynomdivision durchführen.


Gruß
Loddar


Bezug
                                
Bezug
Graphzeichnung von ganzr. Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:08 Mo 03.12.2007
Autor: Jana-WG

Danke für die guten Antworten! Habe, dass heute gleich in dem Test umgesetzt, hoffe er fällt gut aus!

Gruß Jana

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]