www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationGerade und ungerade Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Gerade und ungerade Funktionen
Gerade und ungerade Funktionen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade und ungerade Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 So 06.02.2011
Autor: David90

Aufgabe
Sei [mm] f:\IR\to\IR [/mm] eine stetig differenzierbare und ungerade Funktion und [mm] g:\IR\to\IR [/mm] eine stetig differenzierbare und gerade Funktion. Zeige [mm] \integral_{-a}^{a}{f'(x)*g'(x) dx}=0 [/mm] für alle a>0

Also das ist die dritte Teilaufgabe und ich hab mich mal daran versucht. Also die Integrale trennen in [mm] \integral_{-a}^{0}{f'(x)*g'(x) dx}+\integral_{0}^{a}{f'(x)*g'(x) dx}=0 [/mm] und das ist [mm] \integral_{-a}^{0}{f'(x)*g'(x) dx}=-\integral_{0}^{a}{f'(x)*g'(x) dx} [/mm] So jetzt gilt ja (da f(x)=gerade und g(x)=ungerade) f(x)=-f(-x) und g(x)=g(-x). Aber was gilt denn jetzt für f'(x) und g'(x)? Kann man dann partiell integrieren oder eher Substitution?
Brauche mal nen Anstoß xD
Danke schon mal im Voraus
Gruß David

        
Bezug
Gerade und ungerade Funktionen: Einmal ableiten
Status: (Antwort) fertig Status 
Datum: 11:49 So 06.02.2011
Autor: Infinit

Hallo David,
diese Aufgabe lässt sich auf die schon berechnete zurückführen, denn die Ableitung einer geraden Funktion ergibt eine ungerade Funktion und die Ableitung einer ungeraden Funktion eine gerade Funktion. Dannach geht es so weiter, wie in der anderen Aufgabe schon beschrieben.
Viele Grüße,
Infinit


Bezug
                
Bezug
Gerade und ungerade Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:59 So 06.02.2011
Autor: David90

Achso das heißt dass f'(x)=f(-x) und g'(x)=-g(-x) oder was?:)

Bezug
                        
Bezug
Gerade und ungerade Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 So 06.02.2011
Autor: leduart

Hallo
les bitte genauer und schreib das in formeln hin, was da stand.

was du schreibst ist nicht sehr sinnvoll! (sehr zurückhaltend ausgedrückt)
einfaches Bsp [mm] f(x)=x^4 [/mm] gerade, was weisst du über f'(x) (und dann allgemein warum!)
Gruss leduart



Bezug
                                
Bezug
Gerade und ungerade Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 So 06.02.2011
Autor: David90

Ich weiß nich wie du das meinst, allgemeiner aufschreiben:(
es ist doch so, wenn f(x) gerade ist, dann gilt f(x)=-f(-x) und wenn f'(x) dann ungerade ist dann gilt f'(x)=f(-x) und umgekehrt wenn g(x) ungerade ist, dann gilt g(x)=g(-x) und g'(x) ist dann gerade und dann gilt g'(x)=-g(-x)

Bezug
                                        
Bezug
Gerade und ungerade Funktionen: Gleichungen
Status: (Antwort) fertig Status 
Datum: 13:24 So 06.02.2011
Autor: Infinit

Hallo David,
ich glaube zwar, dass Du das richtige meinst, oder zumindest im Kopf hast,deine Gleichsetzungen stimmen jedoch so nicht, denn dann könnte ich aus jeder geraden Funktion durch Einsetzen der x-Werte sofort die Ableitung bestimmen. Da sind Dir beim Aufschreiben ein paar Ableitungsstriche durch die Lappen gegangen. Noch klarer sollte die Sache werden, wenn Du für die Ableitungen andere Funktionsnamen einführst, die dann wieder die Eigenschaften haben, mit denen Du bereits in der anderen Aufgabe gearbeitest hast.
Viele Grüße,
Infinit


Bezug
                                                
Bezug
Gerade und ungerade Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 So 06.02.2011
Autor: David90

Also kann ich nicht schreiben: [mm] \integral_{-a}^{0}{f'(x)*g'(x) dx}=\integral_{-a}^{0}{f'(-x)*-g'(-x) dx} [/mm] ?:O

Bezug
                                                        
Bezug
Gerade und ungerade Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:52 So 06.02.2011
Autor: leduart

Hallo
warum denn nicht? aber schreibs doch gründlich auf:
bekannt f ungerad, g gerade, daraus folgt... f'(x)=....denn....
g gerade, daraus foögt g'(x)=.... denn...
dann gilt: und jetzt erst kommt deine Integralgleichheit.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]