www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenFunktion stetig, partielle Abl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Funktion stetig, partielle Abl
Funktion stetig, partielle Abl < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion stetig, partielle Abl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Mo 02.02.2009
Autor: MatheSpass

Aufgabe
Sei [mm]f : \IR^2 \to \IR[/mm] mit [mm] f(x,y)=\begin{cases} 0, & \mbox{für } (x,y)=(0,0) \\ xy\bruch{x^2-y^2}{x^2+y^2}, & sonst \end{cases} [/mm].
a) Ist f in (0,0) stetig?
b) Bestimmen Sie die partiellen Ableitungen zweiter Ordnung [mm]\bruch{\partial f_x}{\partial_y}(p)[/mm] sowie [mm]\bruch{\partial f_y}{\partial_x}(p)[/mm] an der Stelle p=(0,0).

Hallo,
ich habe zu obiger Aufgabe folgendes:
a) ja, denn [mm]\limes_{h,t \rightarrow 0}f(h,t) = \limes_{h,t \rightarrow 0}ht\bruch{h^2-t^2}{h^2+t^2} \le \limes_{h,t \rightarrow 0}ht\bruch{h^2}{h^2} = \limes_{h,t \rightarrow 0}ht = 0 = f(0,0) [/mm].
b)
Keine Ahnung. Ich muss doch erst nach x ableiten, dann nach y in (0,0) bzw. andersherum. Wenn ich f nach x mit der Richtungsableitung ableite, komm ich doch darauf: [mm]f_x = \limes_{h\rightarrow 0}\bruch{f(h,0)}{h} = \limes_{h\rightarrow 0}\bruch{h\cdot 0\cdot \bruch{h^2}{h^2}}{h} = 0[/mm]. Das dann nach y abgeleitet, ist doch wieder 0. Die Funktion steht aber in meinem Skript als Beispiel und es gilt: [mm]\partial_x\partial_yf(p) \not= \partial_y\partial_xf(p)[/mm].
Was mache ich falsch und wie wäre es richtig? Ich bin sehr dankbar für Hilfe.

MfG
MatheSpass

        
Bezug
Funktion stetig, partielle Abl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:37 Mo 02.02.2009
Autor: MatheSpass

b) hab ich mittlerweile, stimmen meine überlegungen zu a)?

Bezug
        
Bezug
Funktion stetig, partielle Abl: Antwort
Status: (Antwort) fertig Status 
Datum: 00:25 Di 03.02.2009
Autor: Marcel

Hallo,

> Sei [mm]f : \IR^2 \to \IR[/mm] mit [mm]f(x,y)=\begin{cases} 0, & \mbox{für } (x,y)=(0,0) \\ xy\bruch{x^2-y^2}{x^2+y^2}, & sonst \end{cases} [/mm].
>  
> a) Ist f in (0,0) stetig?
>  b) Bestimmen Sie die partiellen Ableitungen zweiter
> Ordnung [mm]\bruch{\partial f_x}{\partial_y}(p)[/mm] sowie
> [mm]\bruch{\partial f_y}{\partial_x}(p)[/mm] an der Stelle p=(0,0).
>  Hallo,
>  ich habe zu obiger Aufgabe folgendes:
>  a) ja, denn [mm]\limes_{h,t \rightarrow 0}f(h,t) = \limes_{h,t \rightarrow 0}ht\bruch{h^2-t^2}{h^2+t^2} \red{\le} \limes_{h,t \rightarrow 0}ht\bruch{h^2}{h^2} = \limes_{h,t \rightarrow 0}ht = 0 = f(0,0) [/mm].

Das rote [mm] $\le$ [/mm] ist falsch (beachte, dass h,t ja sowohl nichtnegativ als auch negativ sein können, so dass auch $h*t < 0$ möglich wäre) und es würde Dir auch nichts bringen. Du musst ja nicht [mm] $\lim_{h,t \to 0}f(h,t) \le f(0,0)\,,$ [/mm] sondern $=f(0,0)$ nachrechnen!
(Vgl. dazu etwa Bemerkung 8.17 und Satz 10.7 sowie Definition 10.4 aus []diesem Skript.)

Was Du machen kannst:
[mm] $$\text{Das war Unsinn und daher ist's jetzt verworfen! Lese ab dem '' edit: '' weiter.}$$ [/mm]

edit: Mit Deiner Rechnung ist's doch ein wenig eleganter, sofern man sich Beträge spendiert:
[mm] $$\Big|\limes_{h,t \rightarrow 0}f(h,t)\Big| [/mm] = [mm] \limes_{h,t \rightarrow 0}|ht|\bruch{|h^2-t^2|}{h^2+t^2} \le \limes_{h,t \rightarrow 0}|ht| [/mm] = [mm] 0\,,$$ [/mm]
aber ich würde es so, wie ich es hier notiert habe, aufschreiben. Denn $(h,t) [mm] \to [/mm] (0,0)$ gilt auch, wenn $h =0$ und $0 [mm] \not=t \to 0\,,$ [/mm] und dann hätte man mit dem Term [mm] $h^2/h^2$ [/mm] formal Probleme (der Term stünde dann für $0/0$; wobei allerdings sowieso $f(0,t)=0$ für alle [mm] $\,t\,$ [/mm] und $f(h,0)=0$ für alle [mm] $\,h\,$ [/mm] gilt. Aber das führt dann zu Fallunterscheidungen, wobei sich obige Abschätzung ja durchaus auch mithilfe von Fallunterscheidungen begründen läßt...)

Du kannst Dir aber leicht überlegen:
Für $a > 0$ und $b [mm] \ge [/mm] 0$ gilt:
[mm] $$\frac{|a-b|}{a+b} \le 1\,,$$ [/mm]
und mehr braucht man für obige Abschätzung nicht.

  
Teil

> b)
> ...

hat sich ja anscheinend mittlerweile erledigt?

Gruß,
Marcel

Bezug
        
Bezug
Funktion stetig, partielle Abl: Antwort
Status: (Antwort) fertig Status 
Datum: 06:52 Di 03.02.2009
Autor: fred97

Manchmal sind Polarkoordinaten hilfreich.

Sei $x = rcos(t) , y = rsin(t).$

Dann: $|f(x,y)| = [mm] |r^2 [/mm] cos(t)sin(t)( [mm] cos^2(t)-sin^2(t))| \le 2r^2$ [/mm]

FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]