www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFehler von Taylorpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Fehler von Taylorpolynom
Fehler von Taylorpolynom < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehler von Taylorpolynom: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:34 Fr 11.12.2020
Autor: sancho1980

Aufgabe
Sei $f : [-1, 1] [mm] \to \IR$ [/mm] definiert durch $f(x) = [mm] exp(cos(x^2))$. [/mm]
Bestimmen Sie eine Konstante $K > 0$ so, dass für das zweite Taylorpolynom [mm] $P_{2,0}$ [/mm] von $f$ die Abschätzung

$|f(x) - [mm] P_{2,0}(x)| \le K|x|^3$ [/mm] für alle $x [mm] \in [/mm] [-1, 1]$

gilt.


Hallo,
also ich habe (mir) hier (ausrechnen lassen, dass):

[mm] $f^{(1)}(x) [/mm] = [mm] (exp(cos(x^2)))' [/mm] = [mm] -2exp(cos(x^2))sin(x^2)x$ [/mm]
[mm] $f^{(2)}(x) [/mm] = [mm] (-2exp(cos(x^2))sin(x^2)x)' [/mm] = [mm] -2(-2x^2exp(cos(x^2))sin^2(x^2)+exp(cos(x^2))sin(x^2)+2x^2exp(cos(x^2))cos(x^2)) [/mm] = [mm] 2exp(cos(x^2))(2x^2sin^2(x^2)-sin(x^2)-2x^2cos(x^2))$ [/mm]
[mm] $f^{(3)}(x) [/mm] = [mm] (2exp(cos(x^2))(2x^2sin^2(x^2)-sin(x^2)-2x^2cos(x^2)))' [/mm] = [mm] 2(exp(cos(x^2))(2(2xsin^2(x^2)+4x^3cos(x^2)sin(x^2))-2(2xcos(x^2)-2x^3sin(x^2))-2xcos(x^2))-2exp(cos(x^2))sin(x^2)(2x^2sin^2(x^2)-sin(x^2)-2x^2cos(x^2))x^2) [/mm] = [mm] -4exp(cos(x^2))(2x^2sin^3(x^2)-3sin^2(x^2)+(-6x^2cos(x^2)-2x^2)sin(x^2)+3cos(x^2))x$ [/mm]

Die Funktionswerte am Entwicklungspunkt $a = 0$ sind dann wohl:

[mm] $f^{(0)}(x) [/mm] = exp(cos(0)) = e$.
[mm] $f^{(1)}(0) [/mm] = -2exp(cos(0))sin(0)(0) = 0$.
[mm] $f^{(2)}(0) [/mm] = [mm] 2exp(cos(0))(2(0)sin^2(0)-sin(0)-2(0)cos(0)) [/mm] = 0 - 0 - 0 = 0$.

Damit gilt [mm] $P_{2, 0}(x) [/mm] = e$.

Mit dem Satz von Taylor existiert zu jedem $x [mm] \in [/mm] [-1, 1]$ ein [mm] $t_0 \in [/mm] [-1, 1]$, sodass $f(x) = [mm] P_{2, 0}(x) [/mm] + [mm] \frac{f^{(3)}(t_0)}{3!}x^3 [/mm] = e + [mm] \frac{-4exp(cos({t_0}^2))(2{t_0}^2sin^3({t_0}^2)-3sin^2({t_0}^2)+(-6{t_0}^2cos({t_0}^2)-2{t_0}^2)sin({t_0}^2)+3cos({t_0}^2)){t_0}}{6} x^3$. [/mm]

Und jetzt wird's haarig:

Wenn ich das richtig sehe brauche ich das Maximum und das Minimum von [mm] $f^{(3)}$ [/mm] in den Grenzen $[-1,1]$. Gibt es da einen Trick?
Es ist ja [mm] $f^{(4)}(x) [/mm] = [mm] 4exp(cos(x^2))(4x^4sin^4(x^2)-12x^2sin^3(x^2)+(-24x^4cos(x^2)-16x^4+3)sin^2(x^2)+(36x^2cos(x^2)+12x^2)sin(x^2)+12x^4cos^2(x^2)+(4x^4-3)cos(x^2))$. [/mm]

Laut WolframAlpha ist [mm] $f^{(4)}(-1) [/mm] = [mm] 4exp(cos((-1)^2))(4(-1)^4sin((-1)^2)^4-12(-1)^2sin((-1)^2)^3+(-24(-1)^4cos((-1)^2)-16(-1)^4+3)sin((-1)^2)^2+(36(-1)^2cos((-1)^2)+12(-1)^2)sin((-1)^2)+12(-1)^4cos^2((-1)^2)+(4(-1)^4-3)cos((-1)^2)) [/mm] = 47,9$, ebenso gilt [mm] $f^{(4)}(1) [/mm] = [mm] 4exp(cos((1)^2))(4(1)^4sin((1)^2)^4-12(1)^2sin((1)^2)^3+(-24(1)^4cos((1)^2)-16(1)^4+3)sin((1)^2)^2+(36(1)^2cos((1)^2)+12(1)^2)sin((1)^2)+12(1)^4cos^2((1)^2)+(4(1)^4-3)cos((1)^2)) [/mm] = 47,9$, aber [mm] $f^{(4)}(0) [/mm] = [mm] 4exp(cos((0)^2))(4(0)^4sin((0)^2)^4-12(0)^2sin((0)^2)^3+(-24(0)^4cos((0)^2)-16(0)^4+3)sin((0)^2)^2+(36(0)^2cos((0)^2)+12(0)^2)sin((0)^2)+12(0)^4cos^2((0)^2)+(4(0)^4-3)cos((0)^2)) [/mm] = -12e$. Gebe ich aber [mm] $4exp(cos((x)^2))(4(x)^4sin((x)^2)^4-12(x)^2sin((x)^2)^3+(-24(x)^4cos((x)^2)-16(x)^4+3)sin((x)^2)^2+(36(x)^2cos((x)^2)+12(x)^2)sin((x)^2)+12(x)^4cos^2((x)^2)+(4(x)^4-3)cos((x)^2)) [/mm] = 0$ ein, sagt der mir "no roots exist".

Das Ganze nur mal, um eine Vorstellung von der Lösung zu bekommen. Natürlich will ich mich in der Lösung nicht auf WolframAlpha berufen ...

Aber das ist doch irgendwie widersprüchlich.

Gibt es einen eleganten Weg, die lokalen Maxima und Minima von einem so komplexen Ausdruck zu ermitteln?

Danke und Gruß,

Martin

        
Bezug
Fehler von Taylorpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 Fr 11.12.2020
Autor: sancho1980

Hallo,
ich will meine Frage mal prägnanter stellen, vielleicht klappt's ja dann mit einer Antwort. Ich brauch die Nullstellen im Intervalle $[-1,1]$ von [mm] f^{(4)}(x) [/mm] = [mm] 4exp(cos(x^2))(4x^4sin^4(x^2)-12x^2sin^3(x^2)+(-24x^4cos(x^2)-16x^4+3)sin^2(x^2)+(36x^2cos(x^2)+12x^2)sin(x^2)+12x^4cos^2(x^2)+(4x^4-3)cos(x^2)). [/mm]
Das ist doch irre. Wie finde ich die denn raus?
Gruß und Danke,
Martin

Bezug
        
Bezug
Fehler von Taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Fr 11.12.2020
Autor: Gonozal_IX

Hiho,

> Wenn ich das richtig sehe brauche ich das Maximum und das
> Minimum von [mm]f^{(3)}[/mm] in den Grenzen [mm][-1,1][/mm].

nö, denn es verlangt ja niemand von dir, dass dein $K$ optimal gewählt sein soll.
Du kannst also großzügig abschätzen und damit gilt z.B.

[mm] $\left|\frac{-4exp(cos({t_0}^2))(2{t_0}^2sin^3({t_0}^2)-3sin^2({t_0}^2)+(-6{t_0}^2cos({t_0}^2)-2{t_0}^2)sin({t_0}^2)+3cos({t_0}^2)){t_0}}{6}\right| \le \frac{12\cdot(2+3+(6+2)\cdot 1 + 3)}{6} [/mm] = 34$

Gruß,
Gono

Bezug
                
Bezug
Fehler von Taylorpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:46 Fr 11.12.2020
Autor: sancho1980

Ah ok danke, so ist das gemeint ...
Nur dass am Ende mir 32 rauskommt ...


Bezug
        
Bezug
Fehler von Taylorpolynom: 2. Mittelwertsatz
Status: (Antwort) fertig Status 
Datum: 02:25 Sa 12.12.2020
Autor: HJKweseleit

[mm] f(x)=e^{cos(x^2)} [/mm]  sowie [mm] f'(x)=-2xsin(x^2)e^{cos(x^2)}. [/mm]

Sei zunächst [mm] x\in [/mm] (0|1].

Nach dem 2. Mittelwertsatz gibt es ein [mm] \xi \in [/mm] [0|x] mit

[mm] \bruch{f(x)-f(0)}{x^3-0^3}=\bruch{f'(\xi)}{3\xi^2}=\bruch{-2\xi sin(\xi^2)e^{cos(\xi^2)}}{3\xi^2} [/mm]  bzw. wegen [mm] f(0)=e=P_{2,0}(x) [/mm]

[mm] \bruch{f(x)-e}{x^3}=\bruch{f(x)-P_{2,0}(x)}{x^3}=\bruch{-2\xi sin(\xi^2)e^{cos(\xi^2)}}{3\xi^2} [/mm]

[mm] \Rightarrow f(x)-P_{2,0}(x)=-\bruch{2}{3}\xi \bruch{sin(\xi^2)}{\xi^2}e^{cos(\xi^2)}*x^3 [/mm]  

[mm] \Rightarrow |f(x)-P_{2,0}(x)|=\bruch{2}{3}|\xi| |\bruch{sin(\xi^2)}{\xi^2}| |e^{cos(\xi^2)}|*|x|^3\le \bruch{2}{3}*1*1*e^1*|x|^3 [/mm] = [mm] \bruch{2}{3} [/mm] e [mm] |x|^3, [/mm] da [mm] |\xi|\le [/mm] 1 und [mm] |\bruch{sin(t)}{t}|\le [/mm] 1 sowie |cos(t)| [mm] \le [/mm] 1 unabhängig vom Argument t.

Wegen f(x)=f(-x) gilt die Abschätzung auch für das Intervall [-1|0), ebenso für x=0.

Somit:  [mm] |f(x)-P_{2,0}(x)|\le \bruch{2}{3} [/mm] e [mm] |x|^3 [/mm] < 2 [mm] |x|^3. [/mm]

Bezug
                
Bezug
Fehler von Taylorpolynom: Zusatz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:40 Sa 12.12.2020
Autor: HJKweseleit

Mit Hilfe eines Graphikprogrammes habe ich festgestellt, dass sich K auf ca. 1,0037 absenken lässt. 1,0036 ist aber schon zu wenig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]