www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenExtremwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Extremwerte
Extremwerte < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Fr 20.06.2008
Autor: jaruleking

Aufgabe
Zeigen Sie, dass die Funktion

f: [mm] \IR^2 \to \IR^2, f(x,y)=(1+e^y)cos(x)-y*e^y [/mm] unendlich viele lokale Maxima, aber kein lokales Minimum hat.

Lösung:

f ist in [mm] \IR^2 [/mm] beliebig oft diff.bar und es gilt:

[mm] \bruch{\partial f}{\partial x}(x,y)=-(1+e^y)sin(x) [/mm]

[mm] \bruch{\partial f}{\partial y}(x,y)=e^ycos(x)-(y+1)e^y [/mm]

[mm] \bruch{\partial^2 f}{\partial x^2}(x,y)=-(1+e^y)cos(x) [/mm]

[mm] \bruch{\partial^2 f}{\partial x \partial y}(x,y)=-e^ysin(x) [/mm]

[mm] \bruch{\partial^2 f}{\partial y^2}(x,y)=e^ycos(x) -(y+2)e^y [/mm]

Notwendig für das Vorliegen eines lokalen Extremums (x,y) ist Df(x,y)=0, d.h. (x,y) ist eine Lösung des Gleichungssystems

[mm] -(1+e^y)sin(x)=0 [/mm]
[mm] e^ycos(x)-(y+1)e^y=0 [/mm]

Es folgt, dass sin(x)=0, also [mm] x=k\pi [/mm] mit k [mm] \in \IZ. [/mm] Dieses x dann in die zweite Gleichung eingesetzt liefert [mm] y=cos(k\pi)-1=(-1)^k-1 [/mm]


So bis hier hin habe ich auch alles noch verstanden. Jetzt folgt aber:

Wir untersuchen die Hessematrix von f an den Stellen [mm] (2k\pi,0) [/mm] und [mm] ((2k+1)\pi,-2) [/mm] mit k [mm] \in \IZ [/mm] auf Definitheit, um lokale Extrema festzustellen.

So genau hier habe ich jetzt Verständnisprobleme:

Wir haben doch als Nullstellen der ersten partiellen Ableitung folgendes erhalten:


[mm] (k\pi,(-1)^k-1) [/mm] aber wieso untersuchen die Jetzt an den Stellen [mm] (2k\pi,0) [/mm] und [mm] ((2k+1)\pi,-2) [/mm] ? Das versteh ich noch nicht, wo kommen diese Stellen her?

Danke für hilfe.

Gruß

        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Fr 20.06.2008
Autor: djmatey

Hallo,

das ist eine Fallunterscheidung:
Falls k gerade, gilt doch y = 0,
falls k ungerade, gilt y = -2.
Diese beiden Fälle werden nun einzeln betrachtet.
[mm] 2k\pi [/mm] bedeutet hier, dass die geraden k betrachtet werden, daher ist dann auch y = 0, d.h. die Stelle [mm] (2k\pi,0) [/mm]
[mm] (2k+1)\pi [/mm] bedeutet, dass die ungeraden k betrachtet werden, daher ist dann auch y = -2 und die zu untersuchende Stelle [mm] ((2k+1)\pi, [/mm] -2).

LG djmatey

Bezug
                
Bezug
Extremwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 Fr 20.06.2008
Autor: jaruleking

Das macht Sinn. Vielen Dank

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]