www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Extrempunkt Trigonometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Extrempunkt Trigonometrie
Extrempunkt Trigonometrie < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrempunkt Trigonometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Di 10.03.2009
Autor: didi1985

Aufgabe
Extrempunkte von [mm] a_1cos{(\alpha)}+a_2sin{(\alpha)}?? [/mm]

Kann mir hier einen Tipp geben? Also [mm] \alpha [/mm] = 45 Grad bzw. [mm] \pi/4 [/mm] ist es nicht, was mich etwas verwundert hat...

Es muss aber in der Nähe liegen (habe bisschen rumexperimentiert)
Ich weiß nur, dass der Wertebereich in [mm] [-\wurzel{{a_1}^2+{a_2}^2}; +\wurzel{{a_1}^2+{a_2}^2}] [/mm] liegt.
Wäre nett, wenn mir jemand helfen könnte

        
Bezug
Extrempunkt Trigonometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Di 10.03.2009
Autor: fred97

Sei [mm] f(\alpha) [/mm] = $ [mm] a_1cos{(\alpha)}+a_2sin{(\alpha)} [/mm] $

Berechne die Nullstellen von f'

FRED

Bezug
                
Bezug
Extrempunkt Trigonometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:00 Mi 11.03.2009
Autor: didi1985

Danke für die Antwort. Mir ist natürlich klar, dass ich über die Nulstellen der Ableitung Extrempunkte kriege. Aber wie erhalte ich denn die Nullstellen bzw. Schnittstellen von $ [mm] a_1sin{(\alpha)}=a_2cos{(\alpha)} [/mm] $? Divison durch [mm] a_1? [/mm] Gibt es da irgend eine pfiffige trigonometrische Regel?

Bezug
                        
Bezug
Extrempunkt Trigonometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 10:06 Mi 11.03.2009
Autor: angela.h.b.


> Danke für die Antwort. Mir ist natürlich klar, dass ich
> über die Nulstellen der Ableitung Extrempunkte kriege. Aber
> wie erhalte ich denn die Nullstellen bzw. Schnittstellen
> von [mm]a_1sin{(\alpha)}=a_2cos{(\alpha)} [/mm]? Divison durch [mm]a_1?[/mm]
> Gibt es da irgend eine pfiffige trigonometrische Regel?

Hallo,

naja, so direkt als pfiffig würde ich es nicht bezeichnen, aber  für [mm] a_1, \cos\alpha \not=0 [/mm] erhält man ja

[mm] \tan\alpha=\bruch{a_2}{a_1}. [/mm]

Gruß v. Angela


Bezug
                                
Bezug
Extrempunkt Trigonometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:31 Mi 11.03.2009
Autor: didi1985

Natürlich - da hätt ich selber drauf kommen können/müssen. Der gute alte Tangens. Dankeschön

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]