www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Differenzierbarkeit/Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Differenzierbarkeit/Ableitung
Differenzierbarkeit/Ableitung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit/Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:53 So 03.02.2008
Autor: honigbaer

Aufgabe
Zeigen Sei die Differenzierbarkeit der folgenden Funktionen und berechnen Sie ihre Ableitungen:

(1) f : [mm] (1,\infty) \to \IR, [/mm] x [mm] \mapsto [/mm] ln (ln x),
(2) g : [mm] \IR \to \IR, [/mm] x [mm] \mapsto [/mm] sin(1 + cos x),
(3) h: [mm] \IR \to \IC, [/mm] x [mm] \mapsto exp(ix^2), [/mm]

Hallo.

Ich habe große Schwierigkeiten mit diesem Aufgabentyp. Vielleicht kann mir jemand mal exemplarisch an einem dieser Beispiele zeigen, wie man da vorgehen muss...

Das wäre wirklich super, da ich aus meiner Mitschrift überhaupt nicht klug werde.

Viele Dank.

        
Bezug
Differenzierbarkeit/Ableitung: Kettenregel
Status: (Antwort) fertig Status 
Datum: 14:54 So 03.02.2008
Autor: moudi

Hallo honigbaer

Es kommt immer darauf, was man zitieren darf. Ich nehme mal an, dass es genügt, dass die die Addition, Multiplikation und die Verknüpfung von stetig diff'baren Funktionen wieder stetig diff'bar sind.

Alle Ableitungen erhällt man mit der Kettenregel.

Zu 1) Die Ableitung von [mm] $\ln(x)$ [/mm] ist [mm] $\frac{d}{dx}\ln(x)=\frac [/mm] 1x$. Deshalb erhält man mit der Kettenregel:
[mm] $\frac{d}{dx}(\ln(\ln(x)))=\frac 1{\ln(x)}\cdot\frac [/mm] 1x [mm] =\frac 1{x\ln(x)}$. [/mm]

mfG Moudi

Bezug
                
Bezug
Differenzierbarkeit/Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 So 03.02.2008
Autor: honigbaer

Hallo.

Also ich denke, dass ich die Ableitungen wohl hinbekommen werde.

Aber ich würde gerne wissen, wie ich das nun konkret zeigen kann, dass die Funktion f(x) stetig diffbar ist ohne zu verwenden, das das ganze als Komposition oder anderes wieder diffbarer Funktionen wieder diffbar sein muss..

Kann mir da jemand helfen?

Bezug
                        
Bezug
Differenzierbarkeit/Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 So 03.02.2008
Autor: leduart

Hallo
Es kommt drauf an, was du vorrausetzt:
1. wie ist ln definiert.
2. willst du die Differenzierbarkeit von lnx selbst verwenden.
3. habt ihr die Herleitung der Kettenregel gemacht?
Dann folgt daraus, dass du einfach den Beweis für die konkreten Funktionen hinschreibst.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]