www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Dezimalbrüche
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Dezimalbrüche
Dezimalbrüche < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dezimalbrüche: was ist gemeint?
Status: (Frage) beantwortet Status 
Datum: 15:38 Mi 22.11.2006
Autor: Oxford

Hallo,
ich muss folgende Aufgabe lösen:
Es seien [mm] i_{1}, i_{2}, i_{3} [/mm] =0,1,2,3,4,5,6,7,8,9 Ziffern.
a) zeigen Sie: [mm] 0,\underline{i_{1}}=0,i_{1}i_{1}i_{1}...=\bruch{1}{9}*i_{1} [/mm]

Die Aufgabe soll anscheinend sehr leicht sein, nur anscheinend nicht für mich. Es scheitert schon in der ersten Zeile. Bedeutet die Angabe, dass [mm] i_{1} [/mm] irgendeine Ziffer von 0-9 ist, oder? Und was soll das [mm] \bruch{1}{9} [/mm] bedeuten? warum gerade [mm] \bruch{1}{9}? [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Dezimalbrüche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Mi 22.11.2006
Autor: Oxford

Ok, neue erkenntnis ;-)
[mm] \summe_{v=1}^{\infty} \bruch{i_1}{10^{v}}=i_1 [/mm] * [mm] (\bruch{1}{1-\bruch{1}{10}}-1), [/mm] aber wie kommt man auf diese Umformung, bzw. wie heißt diese Rechenregel?

Bezug
                
Bezug
Dezimalbrüche: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Mi 22.11.2006
Autor: angela.h.b.

Hallo,

guck mal in Deinen Unterlagen - oder dem Lehrbuch, welches zur Vorlesung paßt - unter geometrische Reihe nach.

Gruß v. Angela

Bezug
        
Bezug
Dezimalbrüche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 Mi 22.11.2006
Autor: Oxford

und wenn ich jetz auf die geometrische summe auf diese anwende, hab ich die aufgabe gelöst? schon, oder? bitte ;-)

Bezug
                
Bezug
Dezimalbrüche: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Mi 22.11.2006
Autor: angela.h.b.


> und wenn ich jetz auf die geometrische summe auf diese
> anwende, hab ich die aufgabe gelöst? schon, oder? bitte ;-)

Ja.

[mm] 0,i_1i_1i_1i_1...=\summe_{v=1}^{\infty} \bruch{i_1}{10^{v}}= i_1\summe_{v=1}^{\infty} \bruch{1}{10^{v}} [/mm]

und jetzt die geometrische Reihe. Mußt eventuell mit demSummationsindex etwas aufpassen. Hier läuft er beginnend mit 1, nicht mit Null, und die geo.Reihe steht oft beginnend mit Null aufgeschrieben, so daß Du ggf. 1 subtrahieren mußt.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]