www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitDefinition Stetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stetigkeit" - Definition Stetigkeit
Definition Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 So 21.06.2009
Autor: ms2008de

Hallo,
ich habe eine Frage zur Stetigkeit, und zwar:
In der Schule wird einem immer beigebracht, dass stetige Funktionen, diejenigen Funktionen sind, die man mit einem Stift durchzeichnen kann.
Jetzt wurde mir allerdings in der Vorlesung gesagt, dass diese "Definition" im Allgemeinen falsch sei, aber worin liegt der Fehler in dieser Definition, gibts dafür eventuell ein konkretes Gegenbeispiel?

Viele Grüße

        
Bezug
Definition Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 So 21.06.2009
Autor: Marc

Hallo,

>  ich habe eine Frage zur Stetigkeit, und zwar:
>  In der Schule wird einem immer beigebracht, dass stetige
> Funktionen, diejenigen Funktionen sind, die man mit einem
> Stift durchzeichnen kann.
>  Jetzt wurde mir allerdings in der Vorlesung gesagt, dass
> diese "Definition" im Allgemeinen falsch sei, aber worin
> liegt der Fehler in dieser Definition, gibts dafür
> eventuell ein konkretes Gegenbeispiel?

Die Funktion [mm] $\IR\setminus\{0\}\to\IR$, $x\mapsto \frac1x$ [/mm] ist stetig, lässt sich aber nicht "mit einem Stift durchzeichnen".

Viele Grüße,
Marc

Bezug
                
Bezug
Definition Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 So 21.06.2009
Autor: ms2008de

Danke für die schnelle Antwort, aber was ist denn mit Funktionen die keine Definitionslücken haben (also nicht wie in deinem Fall für x=0 nicht definiert sind) und stetig sind, kann man die nich allesamt "mit einem Stift durchzeichnen"?

Bezug
                        
Bezug
Definition Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 So 21.06.2009
Autor: Marc

Hallo,

> Danke für die schnelle Antwort, aber was ist denn mit
> Funktionen die keine Definitionslücken haben (also nicht
> wie in deinem Fall für x=0 nicht definiert sind) und stetig
> sind, kann man die nich allesamt "mit einem Stift
> durchzeichnen"?

Ja, das würde ich sagen, denn es gilt:
Wenn $f:\ [mm] X\to\IR$ [/mm] stetig ist und $X$ wegzusammenhängend ist, dann ist auch $f(X)$ wegzusammenhängend.
(Es kommt natürlich auf die Geschicklichkeit und die Ausdauer des Zeichners an ;-), z.B. bei f(0)=0 und [mm] $f(x):=x*\sin(1/x), x\not=0$) [/mm]

Die Umkehrung ist auch fraglich:
Die Funktion [mm] $f(1):=1-10^{-100000}$, [/mm] $f(x):=1, [mm] x\not=1$ [/mm] kann man ohne Absetzen des Stiftes zeichnen, ist aber nicht stetig.

Um solche Spezialfälle mit der Stiftdefinition zu vereinbaren, muss man sich also immer weiter von dem entfernen, was man umgangssprachlich unter einem Stift versteht.

Viele Grüße,
Marc


Bezug
                                
Bezug
Definition Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 So 21.06.2009
Autor: ms2008de

Hallo,
Du hast geschrieben:
Die Umkehrung ist auch fraglich:
Die Funktion [mm] $f(1):=1-10^{100000}$, [/mm] $f(x):=1, [mm] x\not=1$ [/mm] kann man ohne Absetzen des Stiftes zeichnen, ist aber nicht stetig.
Also die Umkehrung versteh ich nicht, da macht die Funktion an der Stelle x=1 einen deutlichen "Sprung", wieso sollte man diese Funktion also ohne einen Stift abzusetzen durchzeichen können? Das die Funktion an der Stelle 1 unstetig is, is mir klar

Viele Grüße

Bezug
                                        
Bezug
Definition Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 So 21.06.2009
Autor: Marc

Hallo,

>  Also die Umkehrung versteh ich nicht, da macht die
> Funktion an der Stelle x=1 einen deutlichen "Sprung", wieso
> sollte man diese Funktion also ohne einen Stift abzusetzen

Hab's in meiner vorherigen Antwort verbessert.

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]