www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenCauchy S. Ungleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Cauchy S. Ungleichung
Cauchy S. Ungleichung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy S. Ungleichung: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 20:39 Di 24.11.2009
Autor: Mathegirl

Aufgabe
[mm] \IR [/mm] besteht aus n Tupel, [mm] x=(x_1,...x_n) [/mm]
reeller Zahlen.

Wir betrachten: |x|:= [mm] \wurzel{x_1^{2}+...+x_n^{2}} [/mm] die Norm von [mm] x=(x_1,...x_n) [/mm]

Zeige die Dreiecksungleichung [mm] |x+y|\le [/mm] |x|+|y| mit der Ungleichung

[mm] \summe_{k=1}^{n}|a_kb_k|\le (\summe_{k=1}^{n}a_k^{2})^\bruch{1}{2}) (\summe_{k=1}^{n}b_k^{2})^\bruch{1}{2} [/mm]



so...meine Frage ist nun, wie ich das schreibe....

[mm] |a_k+b_k|\le |a_k, a_k|+|b_k,b_k| [/mm]
= [mm] |\lambda*(a_k,..,a_n,a_k,...,a_n)+(\lambda*a_k,...,a_n,b_k)+(\lambda*a_k,..a_n,b_k)+(b_k,b_k) [/mm]
.....usw


oder muss ich das als Summen ausschreiben`??

        
Bezug
Cauchy S. Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Mi 25.11.2009
Autor: fred97

Seien $ [mm] x=(x_1,...x_n) [/mm] $ und $ [mm] y=(y_1,...y_n) [/mm] $ Elemente des [mm] \IR^n [/mm]

Aus $|x|:=  [mm] \wurzel{x_1^{2}+...+x_n^{2}} [/mm] $ folgt

                   [mm] $|x|^2 [/mm] = [mm] x_1^{2}+...+x_n^{2} [/mm] = x*x$

wobei $*$ das Skalarprodukt bezeichne.


Aus der Ungl.

$ [mm] \summe_{k=1}^{n}|a_kb_k|\le (\summe_{k=1}^{n}a_k^{2})^\bruch{1}{2}) (\summe_{k=1}^{n}b_k^{2})^\bruch{1}{2} [/mm] $

folgt:

               (*)         $x*y [mm] \le [/mm] |x*y| [mm] \le [/mm] |x|*|y|$

(wobei in der Mitte mit $|*|$ der reelle Betrag und rechts mit $|*|$ die euklidische Norm gemeint ist.)



Dann:

                     [mm] $|x+y|^2 [/mm] =(x+y)*(x+y) = x*x+2x*y+y*y$

Nun zeige mit (*), dass

               [mm] $|x+y|^2 \le (|x|+|y|)^2 [/mm]

gilt

FRED

Bezug
                
Bezug
Cauchy S. Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Mi 25.11.2009
Autor: Mathegirl

okay, danke. das hab eich verstanden. meine Frage ist nun, ob ich für x und y die Summe einsetzen muss oder nur die [mm] a_k [/mm] bzw [mm] b_k?? [/mm]


Mathegirl

Bezug
                        
Bezug
Cauchy S. Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:30 Do 26.11.2009
Autor: fred97


> okay, danke. das hab eich verstanden.

Das glaube ich nicht !



> meine Frage ist nun,
> ob ich für x und y die Summe einsetzen muss oder nur die
> [mm]a_k[/mm] bzw [mm]b_k??[/mm]


Wir hatten doch:

" Seien $ [mm] x=(x_1,...x_n) [/mm] $ und $ [mm] y=(y_1,...y_n) [/mm] $ Elemente des $ [mm] \IR^n [/mm] $"


FRED


>  
>
> Mathegirl


Bezug
                                
Bezug
Cauchy S. Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Do 26.11.2009
Autor: Mathegirl

Also dementsprechend doch mit Summenzeichen...aber so habe ich es soch bereits formuliert! kannst du mir vielleicht die erste zeile aufschreiben? Ich weiß sonst ehct nicht, wie ich das aufschreiben soll außer meine wirre Summenungleichung....


Mathegirl

Bezug
                                        
Bezug
Cauchy S. Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:59 Fr 27.11.2009
Autor: fred97

Soweit waren wir:

(*)         $ [mm] x\cdot{}y \le |x\cdot{}y| \le |x|\cdot{}|y| [/mm] $



        $ [mm] |x+y|^2 =(x+y)\cdot{}(x+y) [/mm] = [mm] x\cdot{}x+2x\cdot{}y+y\cdot{}y [/mm] $.

Also:

        $ [mm] |x+y|^2 =|x|^2+2x*y+|y|^2$ [/mm]

Aus (*) folgt:

        $ [mm] |x+y|^2 =|x|^2+2x*y+|y|^2 \le |x|^2+2|x|*|y|+|y|^2=(|x|+|y|)^2$ [/mm]


Daher:                 $ |x+y| [mm] \le [/mm] |x|+|y|$

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]