www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraBild des Einsetzhomomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Bild des Einsetzhomomorphismus
Bild des Einsetzhomomorphismus < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild des Einsetzhomomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:49 Fr 10.04.2020
Autor: inkeddude

Hallöchen, ich habe Probleme, ein Beweis zu verstehen.

Ich hoffe, mir kann da jemand helfen.



Satz:


Ist $L/K$ eine Körpererweiterung und sind [mm] $\alpha_{1}, \ldots, \alpha_{n} \in [/mm] L$ algebraisch über $K$, dann gilt [mm] $K(\alpha_{1}, \ldots, \alpha_{n}) [/mm] = [mm] K[\alpha_{1}, \ldots, \alpha_{n}]$ [/mm] und [mm] $K(\alpha_{1}, \ldots, \alpha_{n}) [/mm] / K$ endlich und damit algebraisch.



Beweis:

Wir führen den Beweis mit Induktion nach $n$, wobei der Fall $ n =1$ aus Übungsaufgabe 7 folgt.


Sei also $n > 1$. Mittels Induktion wissen wir, dass [mm] $K(\alpha_{1}, \ldots, \alpha_{n - 1}) [/mm] = [mm] K[\alpha_{1}, \ldots, \alpha_{n - 1}]$ [/mm] und dass [mm] $K(\alpha_{1}, \ldots, \alpha_{n - 1}) [/mm] / K$ endlich ist. Wie im Fall $ n = 1$ folgt dann

[mm] $K(\alpha_{1}, \ldots, \alpha_{n}) [/mm] = [mm] K(\alpha_{1}, \ldots, \alpha_{n - 1})(\alpha_{n}) [/mm] = [mm] K[\alpha_{1}, \ldots, \alpha_{n - 1}](\alpha_{n}) [/mm] = [mm] K[\alpha_{1}, \ldots, \alpha_{n}]$, [/mm]

da [mm] $\alpha_{n} [/mm] auch algebraisch über [mm] $K(\alpha_{1}, \ldots, \alpha_{n - 1})$ [/mm] ist, und [mm] $K(\alpha_{1}, \ldots, \alpha_{n}) [/mm] / [mm] K(\alpha_{1}, \ldots, \alpha_{n - 1})$ [/mm] ist endlich.


Aus Satz $4.24$ folgt dann, dass auch [mm] $K(\alpha_{1}, \ldots, \alpha_{n}) [/mm] /K$ eine endliche Körpererweiterung ist.



Satz 4.24 lautet außerdem:


Satz 4.24 (Gradformel)
___________________

Sind $K [mm] \le [/mm] L [mm] \le [/mm] M$ Körper, so gilt die Gradformel [mm] $\vert [/mm] M : K [mm] \vert [/mm] = [mm] \vert [/mm] M : L [mm] \vert \cdot \vert [/mm] L : K [mm] \vert$. [/mm]

Insbesondere, sind $M / L $ und $L/K$ endlich, so ist auch $M/K$ endlich und algebraisch.




Ich habe einerseits Fragen zum Beweis und andererseits Fragen zu den Symbolen.


1.) Was soll [mm] $K[\; \alpha_{1}, \ldots, \alpha_{n} \; [/mm] ]$ denn bedeuten ?

Ich weiß nur, was [mm] $K[\; \alpha \; [/mm] ]$ bedeutet.


[mm] $K[\; \alpha \; [/mm] ]$ ist das Bild des Einsetzhomomorphismus [mm] $\varphi_{\alpha}$. [/mm]

Aber was ist, wenn da mehrere Alphas in der eckigen Klammer stehen ?  


Was bedeutet das ?



2.)

Ich schreibe den Induktionsbeweis strukturierter auf, bevor ich meine Frage dazu stelle.



Induktionsanfang
_______________

Sei $n = 1$. Dann gilt [mm] $K(\alpha_{1}) [/mm] = [mm] K[\alpha_{1}]$ [/mm] (haben wir in einer Übungsaufgabe schon gezeigt)


Induktionsannahme
________________


Angenommen,  für [mm] $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n - 1}$ [/mm] gelte die Gleichung

[mm] $K(\alpha_{1}, \ldots, \alpha_{n - 1}) [/mm] = [mm] K[\alpha_{1}, \ldots, \alpha_{n - 1}]$ [/mm] und [mm] $K(\alpha_{1}, \ldots, \alpha_{n - 1}) [/mm] /K$ sei endlich.



Induktionsschritt
______________


Warum gilt [mm] $K(\alpha_{1}, \ldots, \alpha_{n}) [/mm] = [mm] K(\alpha_{1}, \ldots, \alpha_{n - 1})(\alpha_{n})$ [/mm] und  $ [mm] K[\alpha_{1}, \ldots, \alpha_{n - 1}](\alpha_{n}) [/mm] = [mm] K[\alpha_{1}, \ldots, \alpha_{n}]$ [/mm] ?


Dass [mm] $K(\alpha_{1}, \ldots, \alpha_{n - 1})(\alpha_{n}) [/mm] =  [mm] K[\alpha_{1}, \ldots, \alpha_{n - 1}](\alpha_{n})$ [/mm] gilt, ist klar, da nach Induktionsannahme die Gleichung [mm] $K(\alpha_{1}, \ldots, \alpha_{n - 1}) [/mm] = [mm] K[\alpha_{1}, \ldots, \alpha_{n - 1}]$ [/mm] gilt.


Und wie folgern sie daraus, dass [mm] $K(\alpha_{1}, \ldots, \alpha_{n}) [/mm] / [mm] K(\alpha_{1}, \ldots, \alpha_{n - 1})$ [/mm] endlich ist ?




Das sind meine Fragen. Freue mich auf eure Antworten :-)

mfg, Inkeddude


        
Bezug
Bild des Einsetzhomomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 So 12.04.2020
Autor: hippias


> Hallöchen, ich habe Probleme, ein Beweis zu verstehen.
>  
> Ich hoffe, mir kann da jemand helfen.
>  
>
>
> Satz:
>  
>
> Ist [mm]L/K[/mm] eine Körpererweiterung und sind [mm]\alpha_{1}, \ldots, \alpha_{n} \in L[/mm]
> algebraisch über [mm]K[/mm], dann gilt [mm]K(\alpha_{1}, \ldots, \alpha_{n}) = K[\alpha_{1}, \ldots, \alpha_{n}][/mm]
> und [mm]K(\alpha_{1}, \ldots, \alpha_{n}) / K[/mm] endlich und damit
> algebraisch.
>  
>
>
> Beweis:
>  
> Wir führen den Beweis mit Induktion nach [mm]n[/mm], wobei der Fall
> [mm]n =1[/mm] aus Übungsaufgabe 7 folgt.
>  
>
> Sei also [mm]n > 1[/mm]. Mittels Induktion wissen wir, dass
> [mm]K(\alpha_{1}, \ldots, \alpha_{n - 1}) = K[\alpha_{1}, \ldots, \alpha_{n - 1}][/mm]
> und dass [mm]K(\alpha_{1}, \ldots, \alpha_{n - 1}) / K[/mm] endlich
> ist. Wie im Fall [mm]n = 1[/mm] folgt dann
>  
> [mm]K(\alpha_{1}, \ldots, \alpha_{n}) = K(\alpha_{1}, \ldots, \alpha_{n - 1})(\alpha_{n}) = K[\alpha_{1}, \ldots, \alpha_{n - 1}](\alpha_{n}) = K[\alpha_{1}, \ldots, \alpha_{n}][/mm],
>  
> da [mm]$\alpha_{n}[/mm] auch algebraisch über [mm]$K(\alpha_{1}, \ldots, \alpha_{n - 1})$[/mm]
> ist, und [mm]$K(\alpha_{1}, \ldots, \alpha_{n})[/mm] / [mm]K(\alpha_{1}, \ldots, \alpha_{n - 1})$[/mm]
> ist endlich.
>  
>
> Aus Satz [mm]4.24[/mm] folgt dann, dass auch [mm]K(\alpha_{1}, \ldots, \alpha_{n}) /K[/mm]
> eine endliche Körpererweiterung ist.
>  
>
>
> Satz 4.24 lautet außerdem:
>  
>
> Satz 4.24 (Gradformel)
>  ___________________
>  
> Sind [mm]K \le L \le M[/mm] Körper, so gilt die Gradformel [mm]\vert M : K \vert = \vert M : L \vert \cdot \vert L : K \vert[/mm].
>  
> Insbesondere, sind [mm]M / L[/mm] und [mm]L/K[/mm] endlich, so ist auch [mm]M/K[/mm]
> endlich und algebraisch.
>  
>
>
>
> Ich habe einerseits Fragen zum Beweis und andererseits
> Fragen zu den Symbolen.
>  
>
> 1.) Was soll [mm]K[\; \alpha_{1}, \ldots, \alpha_{n} \; ][/mm] denn
> bedeuten ?
>  
> Ich weiß nur, was [mm]K[\; \alpha \; ][/mm] bedeutet.
>  
>
> [mm]K[\; \alpha \; ][/mm] ist das Bild des Einsetzhomomorphismus
> [mm]\varphi_{\alpha}[/mm].

Du musst den Inhalt der Vorlesungen besser parat haben. Ich werde Dir nicht die Mühe abnehmen selber das Skript nach der entsprechenden Definition durchzuarbeiten. Aber um die Frage nicht ganz unbeachtet zu lassen dies: Du sprichst von einem Einsetzungshomomorphismus; was ist seine Definitionsmenge?
  

>  
> Aber was ist, wenn da mehrere Alphas in der eckigen Klammer
> stehen ?  
>
>
> Was bedeutet das ?
>  
>
>
> 2.)
>  
> Ich schreibe den Induktionsbeweis strukturierter auf, bevor
> ich meine Frage dazu stelle.
>  
>
>
> Induktionsanfang
>  _______________
>  
> Sei [mm]n = 1[/mm]. Dann gilt [mm]K(\alpha_{1}) = K[\alpha_{1}][/mm] (haben
> wir in einer Übungsaufgabe schon gezeigt)
>  
>
> Induktionsannahme
>  ________________
>  
>
> Angenommen,  für [mm]\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n - 1}[/mm]
> gelte die Gleichung
>
> [mm]K(\alpha_{1}, \ldots, \alpha_{n - 1}) = K[\alpha_{1}, \ldots, \alpha_{n - 1}][/mm]
> und [mm]K(\alpha_{1}, \ldots, \alpha_{n - 1}) /K[/mm] sei endlich.
>  
>
>
> Induktionsschritt
>  ______________
>  
>
> Warum gilt [mm]K(\alpha_{1}, \ldots, \alpha_{n}) = K(\alpha_{1}, \ldots, \alpha_{n - 1})(\alpha_{n})[/mm]

Dies folgt aus der Definition von [mm] $K(\alpha_{1}, \ldots, \alpha_{n})$, [/mm] die Du in Deinem Skript findest.

> und  [mm]K[\alpha_{1}, \ldots, \alpha_{n - 1}](\alpha_{n}) = K[\alpha_{1}, \ldots, \alpha_{n}][/mm]
> ?
>  
>
> Dass [mm]K(\alpha_{1}, \ldots, \alpha_{n - 1})(\alpha_{n}) = K[\alpha_{1}, \ldots, \alpha_{n - 1}](\alpha_{n})[/mm]
> gilt, ist klar, da nach Induktionsannahme die Gleichung
> [mm]K(\alpha_{1}, \ldots, \alpha_{n - 1}) = K[\alpha_{1}, \ldots, \alpha_{n - 1}][/mm]
> gilt.
>
>
> Und wie folgern sie daraus, dass [mm]K(\alpha_{1}, \ldots, \alpha_{n}) / K(\alpha_{1}, \ldots, \alpha_{n - 1})[/mm]
> endlich ist ?

Vielleicht wird der Beweis verständlicher, wenn ich $F:= [mm] K(\alpha_{1}, \ldots, \alpha_{n-1})$ [/mm] der Übersichtlichkeit halber als Abkürzung einführe.
Prüfe, ob auf $F$ und [mm] $\alpha_{n}$ [/mm] der in der Übung bewiesene Satz anwendbar ist.

>  
>
>
>
> Das sind meine Fragen. Freue mich auf eure Antworten :-)
>  
> mfg, Inkeddude
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]