www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungBernoulli und n über k
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitsrechnung" - Bernoulli und n über k
Bernoulli und n über k < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli und n über k: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:19 Mo 07.01.2008
Autor: tAtey

Hallo, schreibe nächste Woche mein Mathe-Abi und verzweifel heute an allem, was mit Mathe zu tun hat. :)

Bei Bernoulli errechnet sich die Wahrscheinlichkeit eines Ereignisses durch die Anzahl der Pfade, die zum Ereignis gehören mal Wahrscheinlichkeit des Pfades, der zum Ereignis gehört.
Für die Anzahl der Pfade verwendet man [mm] \vektor{n \\ k} [/mm]
Aber wieso? Ist n über k normalerweise nicht für Ziehen ohne Zurücklegen und ohne Reihenfolge?
Kann mir da jemand weiterhelfen?

Lg

        
Bezug
Bernoulli und n über k: nicht verrückt machen!
Status: (Antwort) fertig Status 
Datum: 16:00 Mo 07.01.2008
Autor: informix

Hallo tAtey,

> Hallo, schreibe nächste Woche mein Mathe-Abi und verzweifel
> heute an allem, was mit Mathe zu tun hat. :)

nana, nun mal nicht nervös werden...!

>  
> Bei Bernoulli errechnet sich die Wahrscheinlichkeit eines
> Ereignisses durch die Anzahl der Pfade, die zum Ereignis
> gehören mal Wahrscheinlichkeit des Pfades, der zum Ereignis
> gehört.
>  Für die Anzahl der Pfade verwendet man [mm]\vektor{n \\ k}[/mm]
>  
> Aber wieso? Ist n über k normalerweise nicht für Ziehen
> ohne Zurücklegen und ohne Reihenfolge?
> Kann mir da jemand weiterhelfen?
>  

alles so weit richtig, was du sagst.

$ [mm] P(X=k)={n\choose k}p^k(1-p)^{n-k} [/mm] $ beschreibt die Wkt. für k Treffer bei n Möglichkeiten.
Nun können die Treffer alle hintereinander auftreten, aber auch in vielen anderen MBKombinationen.
Zeichne mal einen Baum für n=3 oder n=4 und verfolge das Ereignis k=2.

Jeder einzelne Pfad hat die Wkt. [mm] p^k(1-p)^{n-k} [/mm] und es gibt [mm]\vektor{n \\ k}[/mm] viele Pfade.

Jetzt klar(er)?

Gruß informix

Bezug
                
Bezug
Bernoulli und n über k: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Mo 07.01.2008
Autor: tAtey

Aber warum gibt n über k die Anzahl der Pfade an? Schließlich ist das ja OHNE Zurücklegen, und Bernoulli-Versuche sind doch Ziehen MIT Zurücklegen, da sich ja sonst die Wahrscheinlichkeit für einen Erfolg ändern würde.

Bezug
                        
Bezug
Bernoulli und n über k: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Mo 07.01.2008
Autor: informix

Hallo tAtey,

> Aber warum gibt n über k die Anzahl der Pfade an?
> Schließlich ist das ja OHNE Zurücklegen, und
> Bernoulli-Versuche sind doch Ziehen MIT Zurücklegen, da
> sich ja sonst die Wahrscheinlichkeit für einen Erfolg
> ändern würde.  

nein, du willst nur wissen (=zählen), wie viele Möglichkeiten es gibt, bei 3 Stufen 2 Treffer zu erzielen:
TTN oder TNT oder NTT und das Ganze zweimal, weil du die Treffer untereinander noch vertauschen kannst.

vielleicht hilft dir []diese Seite zum Verständnis.
Klick dich mal rein.

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]