www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBerechnen von Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Berechnen von Reihen
Berechnen von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnen von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Mi 28.01.2009
Autor: Extreme2008

Aufgabe
Hallo,


Ich hab ein Problem mit folgender Aufgabe.Und zwar weiß ich nicht wie ich diese Aufgabe am besten löse. Ich hab schon einiges ausprobiert aber Ich bin bis jetzt nie auf die richtige Lösung gekommen. Wenn mir jemand den Rechenweg sagen könnte würde mir das sehr helfen. Vielen Dank schonmal im vorraus ;-)

Die Aufgabe habe ich als Bild hinzugefügt

Berechne die folgende Reihe:
[]http://www.imagepanther.com/imgs/006c786985d8bd473c05-reihe.jpg

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/Berechnen-von-Reihen

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Berechnen von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Mi 28.01.2009
Autor: XPatrickX

Hallo, schreibe dazu die Summe etwas um:

[mm] $\summe_{n=1}^{\infty} \frac{1}{2^{n-1}}= \summe_{n=1}^{\infty} \frac{1}{2^n*2^{-1}}=\summe_{n=1}^{\infty} 2*\frac{1}{2^n} [/mm] = 2* [mm] \summe_{n=1}^{\infty} \left( \frac{1}{2} \right)^n [/mm] = .....$

(Achtung Laufindex beachten!)

Gruß Patrick

Bezug
                
Bezug
Berechnen von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Mi 28.01.2009
Autor: Extreme2008

könntest du mir vllt den kompletten lösungsweg geben damit ich weiß wie man das richtig macht. wär super

Bezug
                        
Bezug
Berechnen von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Mi 28.01.2009
Autor: schachuzipus

Hallo Extreme2008,

> könntest du mir vllt den kompletten lösungsweg geben damit
> ich weiß wie man das richtig macht. wär super

Also, ich muss ja sagen: das ist ganz schön unverschämt!

Patrick hat dir alles bis auf den letzten klitzekleinen Schritt vorgerechnet und die entscheidende Umformung gemacht.

Wo bleibt deine Eigeninitiative (--> siehe Forenregeln)

Welchen Typs sind die Reihen [mm] $\sum\limits_{n}q^n$ [/mm] ?

Schlage im Skript nach!

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]