www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAbleitung: Quotientenregel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Ableitung: Quotientenregel
Ableitung: Quotientenregel < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Quotientenregel: Frage
Status: (Frage) beantwortet Status 
Datum: 21:55 Mo 22.11.2004
Autor: Lucie

Guten Abend, ich hab mal wieder eine Frage zu den Ableitungen:

[mm] \bruch{t}{x²+t²} [/mm]

muss ich 2mal ableiten um die Wendestellen herauszubekommen, aber meine erste Ableitung heißt:

f'(x)=  [mm] \bruch{-2xt-2t²}{(x²+t²)} [/mm]

und dass kann doch schon nicht sein weil der Nenner doch schon (x²+t²)² heißen müsste, oder? Aber das kürzt sich bei mir weg???
Kann mir da jemand helfen? Kann sonst auch meinen Zwischenschritt angeben.

Danke, Gruß Lucie

        
Bezug
Ableitung: Quotientenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:56 Mo 22.11.2004
Autor: Lucie

hab vergessen zu sagen, dass t>0 ist

Bezug
        
Bezug
Ableitung: Quotientenregel: Falsch gerechnet
Status: (Antwort) fertig Status 
Datum: 22:38 Mo 22.11.2004
Autor: stalinus

Ich kriege für [mm] f'(x)=\bruch{-2xt}{(x^{2}+t^{2})^{2}} [/mm]


Bezug
        
Bezug
Ableitung: Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Mo 22.11.2004
Autor: Youri


> Guten Abend, ich hab mal wieder eine Frage zu den
> Ableitungen:

N'abend, Lucie!
  

> [mm]\bruch{t}{x²+t²} [/mm]

Also - ich nehme an, es handelt sich um eine Funktionenschar in Abhängigkeit von x? [grins]

[mm]f_t(x)=\bruch{t}{x^2+t^2}[/mm]
  

> muss ich 2mal ableiten um die Wendestellen
> herauszubekommen, aber meine erste Ableitung heißt:

  

> f'(x)=  [mm]\bruch{-2xt-2t²}{(x²+t²)} [/mm]

[notok]
  

> und dass kann doch schon nicht sein weil der Nenner doch
> schon (x²+t²)² heißen müsste, oder? Aber das kürzt sich bei
> mir weg???
>  Kann mir da jemand helfen? Kann sonst auch meinen
> Zwischenschritt angeben.

Das hättest Du mal machen sollen.
So kann man nicht sehen, wo Dein Fehler liegt.
Wichtig ist - t ist eine beliebige Konstante.

Erinnern wir uns also nochmal Schritt für Schritt.

Die Quotientenregel:
[mm] f(x) = \bruch{u(x)}{v(x)}[/mm]
=> [mm] f'(x)=\bruch{u'(x)*v(x)-u(x)*v'(x)}{(v(x))^2}[/mm]

Und nun - wie lautet die Ableitung des Zählers nach x?
[mm] u_t(x) = t [/mm]
[mm] u_t'(x)=0 [/mm]

Der Nenner abgeleitet ergibt:
[mm]v_t(x)=x^2+t^2[/mm]
[mm]v_t'(x)=2x[/mm]

Daher lautet die erste Ableitung:
[mm]f_t'(x)=\bruch{0*(x^2+t^2)-2x*t}{(x^2+t^2)^2}=\bruch{-2xt}{(x^2+t^2)^2}[/mm]  

Bist Du möglicherweise mit den beiden Buchstaben durcheinander gekommen? [verwirrt]

Versuche doch nochmal ganz konsequent die zweite Ableitung -
sofern Du die erste nachvollziehen kannst.
Lass Dich durch das böse "t" nicht irritieren - da könnte auch eine beliebige Zahl stehen. ;-)

Lieben Gruß,
Andrea.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]