www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisAbleiten einer C^2-Kurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - Ableiten einer C^2-Kurve
Ableiten einer C^2-Kurve < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten einer C^2-Kurve: Ableiten,Beweis,
Status: (Frage) beantwortet Status 
Datum: 16:52 So 11.10.2009
Autor: Balendilin

Aufgabe
Sei [mm] \gamma [/mm] eine [mm] C^2-Kurve [/mm] mit [mm] \gamma=(x,y) [/mm] und sei [mm] \beta [/mm] eine Umparametrisierung von [mm] \gamma [/mm] auf Einheitsgeschwindigkeit, [mm] \beta(s)=\gamma(t(s)). [/mm] Dann gilt:

[mm] \beta'=\frac{\dot{\gamma}}{\dot{s}} [/mm] mit [mm] \dot{s}(t)=||\dot{\gamma}(t)|| [/mm]
und
[mm] \beta''=\ddot{\gamma}\frac{1}{\dot{s}^2}-\dot{\gamma}\frac{\ddot{s}}{\dot{s}^2} [/mm]

Egal, was ich mache, ich bekomme für die zweite Ableitung [mm] \beta'' [/mm] immer folgendes raus:

[mm] \beta''=\ddot{\gamma}\frac{\dot{s}}{\dot{s}^3}-\dot{\gamma}\frac{\ddot{s}}{\dot{s}^3} [/mm]

und das ist ja nicht das Gleiche wie oben. Wo steckt also mein Fehler?

        
Bezug
Ableiten einer C^2-Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 So 11.10.2009
Autor: MathePower

Hallo Balendilin,

> Sei [mm]\gamma[/mm] eine [mm]C^2-Kurve[/mm] mit [mm]\gamma=(x,y)[/mm] und sei [mm]\beta[/mm]
> eine Umparametrisierung von [mm]\gamma[/mm] auf
> Einheitsgeschwindigkeit, [mm]\beta(s)=\gamma(t(s)).[/mm] Dann gilt:
>  
> [mm]\beta'=\frac{\dot{\gamma}}{\dot{s}}[/mm] mit
> [mm]\dot{s}(t)=||\dot{\gamma}(t)||[/mm]
>  und
>  
> [mm]\beta''=\ddot{\gamma}\frac{1}{\dot{s}^2}-\dot{\gamma}\frac{\ddot{s}}{\dot{s}^2}[/mm]
>  Egal, was ich mache, ich bekomme für die zweite Ableitung
> [mm]\beta''[/mm] immer folgendes raus:
>  
> [mm]\beta''=\ddot{\gamma}\frac{\dot{s}}{\dot{s}^3}-\dot{\gamma}\frac{\ddot{s}}{\dot{s}^3}[/mm]
>  
> und das ist ja nicht das Gleiche wie oben. Wo steckt also
> mein Fehler?


Ich habe dasselbe heraus wie Du.

Demnach wird das ein Fehler in der Aufgabe sein.


Gruss
MathePower

Bezug
                
Bezug
Ableiten einer C^2-Kurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 12.10.2009
Autor: Balendilin


> Ich habe dasselbe heraus wie Du.
>  
> Demnach wird das ein Fehler in der Aufgabe sein.
>  
>
> Gruss
>  MathePower


Allerdings ist das keine Aufgabe, sondern ein Beweis aus dem Königsberger Analysis 1. Und das steht genau so in sogar mehreren Ausgaben dieses Buches. Es steckt also mit sehr, sehr großer Sicherheit kein Fehler in dieser Aufgabe/dem Buch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]