www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert beweisen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Grenzwert beweisen
Grenzwert beweisen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Di 28.07.2009
Autor: ms2008de

Aufgabe
Beweisen Sie: [mm] \limes_{n\rightarrow\infty} \wurzel[n]{n!}=\infty [/mm]

Hallo,
Könnte ich hier nicht einfach das Ganze umschreiben in:
[mm] \limes_{n\rightarrow\infty} \wurzel[n]{n!} [/mm] = [mm] \limes_{n\rightarrow\infty} n!^{\bruch{1}{n}} [/mm] = [mm] \limes_{n\rightarrow\infty} e^{\bruch{ln(n!)}{n}} [/mm]  und jetzt reichts ja nur den Exponenten zu betrachten, wenn ich aber de l´Hospital draufloslassen will, hab ich das Problem, dass ich nich weiß wie man n! ableiten könnte, falls das überhaupt möglich is.
Hab auch schon versucht das ganze durch zwei Folgen mit selbem Grenzwert einzuschließen, indem ich als obere Grenze: [mm] \limes_{n\rightarrow\infty} \wurzel[n]{n^{n}}= \limes_{n\rightarrow\infty} [/mm] n = [mm] \infty. [/mm] Jetzt fehlt mir aber eine untere Grenze, die ich einfach nicht finde.
Hoffe mir kann jmd. weiterhelfen, wär um jede Hilfe dankbar.

Viele Grüße

        
Bezug
Grenzwert beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Di 28.07.2009
Autor: schachuzipus

Hallo ms2008de,

du könntest die Stirling-Formel verwenden, die dir für große n eine gute Näherung für $n!$ liefert:

[mm] $n!\sim \sqrt{2\pi n}\cdot{}\left(\frac{n}{e}\right)^n$ [/mm]

Alternativ kannst du zum einen für gerade n wie folgt abschätzen:

[mm] $\sqrt[n]{n!}=\sqrt[n]{\underbrace{n\cdot{}(n-1)\cdot{}...\cdot{}\frac{n}{2}}_{\frac{n}{2} \text{Faktoren}}\cdot{}\underbrace{\left(\frac{n}{2}-1\right)\cdot{}...\cdot{}2\cdot{}1}_{\frac{n}{2} \text{Faktoren}}}\ge\sqrt[n]{\frac{n}{2}\cdot{}\frac{n}{2}\cdot{}...\cdot{}\frac{n}{2}\cdot{}1\cdot{}1\cdot{}...\cdot{}1}$ [/mm]

[mm] $=\sqrt[n]{\left(\frac{n}{2}\right)^{\frac{n}{2}}}=\sqrt{\frac{n}{2}}\longrightarrow \infty$ [/mm] für [mm] $n\to\infty$ [/mm]

Ganz ähnlich mache auch eine Abschätzung für ungerade n ...



LG

schachuzipus

Bezug
                
Bezug
Grenzwert beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:24 Di 28.07.2009
Autor: ms2008de

Vielen Dank nochmal,
Hab das ganze für n ungerade nun einfach mit Gaußklammern gelöst so, dass ich n/2 Faktoren aufgerundet hab und ebenfalls wieder so abschätzen konnt, dass [mm] \wurzel{\bruch{n}{2}} \to \infty [/mm] dasteht.
Die Stirlingformel war mir bislang unbekannt.

Viele Grüße

Bezug
        
Bezug
Grenzwert beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:30 Mi 29.07.2009
Autor: fred97

Noch eine Möglichkeit: Betrachte die Potenzreihe

               [mm] $\summe_{n=0}^{\infty}\bruch{x^n}{n!}$ [/mm]

Mit dem Quotientenkriterium sieht man sehr leicht, dass diese Potenzreihe in jedem $x [mm] \in \IR$ [/mm] konvergiert. Die Potenzreihe hat also den Konvergenzradius [mm] \infty. [/mm]

Mit der Formel von Cauchy-Hadamard für den Konvergenzradius folgt:

           $0 = lim~sup [mm] \bruch{1}{\wurzel[n]{n!}}$ [/mm]

Dann ist aber

           $lim [mm] \bruch{1}{\wurzel[n]{n!}}=0$ [/mm]

und daraus folgt die Behauptung.

FRED

          

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]